Advertisement

Neuroinformatics

, Volume 2, Issue 1, pp 19–58 | Cite as

Integrating databases and expert systems for the analysis of brain structures

Connections, similarities, and homologies
Original Article

Abstract

The NeuroHomology Database system (NHDB) combines databases related to brain structure from different species with different knowledge management systems (KMSs) for systematization, evaluation and processing neurobiological data. Special attention is assessment of similarity of data from different species as a basis for exploring neural homologies. NHDB includes modules that handle brain structure and connectivity data, as well as inference engines for evaluation of the stored neurobiological information. The spatial inference engine evaluates the possible topological relations between cortical structures in different neuroanatomical atlases. The connectivity inference engine evaluates the reliability of information pertaining to fiber tracts as those are reflected in the literature. The inference engine for translation of neuroanatomical connections in different atlases evaluates the probability of existence of connections of interest in different parcellation schemes. Finally, the similarity inference engine calculates the overall degree of similarity of pairs of brain structures from different species by taking into account a set of eight criteria. We present examples of search for information in NHDB system, inferences of relations between cortical structures from equivalent neuroanatomical atlases, reconstruction of functional networks of brain structures from data collated from the literature, translation of connectivity matrices in equivalent parcellation schemes, and evaluations of similarities of brain structures from humans, macaques and rats.

Index Entries

Online database systems inference engine knowledge management systems brain similarities homology hodology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen R. A., Asanuma C., Essick G., and Siegel R. M. (1990) Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J. Comp. Neurol. 296(1), 65–113.PubMedCrossRefGoogle Scholar
  2. Arbib M. A. (2001) NeuroInformatics, The Issues. In Arbib M.A. and Grethe J. (eds) Computing the Brain, A Guide to Neuroinformatics, Academic Press, San Diego, CA, pp. 3–28.Google Scholar
  3. Arbib M. A. and Bischoff-Grethe A. (2001) Summary databases and model repositories. In Arbib M. A., Grethe J. (eds) Computing the Brain, A Guide to Neuroinformatics, Academic Press, San Diego, CA, pp. 287–297.Google Scholar
  4. Bailey P. and von Bonin G. (1951) The Isocortex of the Man. University of Illinois Press, Urbana, IL.Google Scholar
  5. Barbas H. and Pandya D. N. (1987) Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J. Comp. Neurol. 256(2),211–228.PubMedCrossRefGoogle Scholar
  6. Bischoff-Grethe A., Spoelstra J., and Arbib M.A. (2001) Brain models on the web and the need for summary data. In Arbib M.A., and Grethe J. (eds) Computing the Brain, A Guide to Neuroinformatics, Academic Press, San Diego, CA, pp. 287–296.Google Scholar
  7. Bota, M. (2001) Neural Homologies, Principles, Databases and Modeling. University of Southern California, Ph.D. Thesis.Google Scholar
  8. Bota M. and Arbib M.A. (2001) The NeuroHomology Database. In Arbib M. A. and Grethe J. (eds) Computing the Brain, A Guide to Neuroinformatics, Academic Press, San Diego, CA, pp. 337–351.Google Scholar
  9. Bota M. and Arbib M. A. (2002) The NeuroHomology Database, an online KMS for handling and evaluation of the neurobiological information. In Kotter, R. ed., Neuroscience Databases, Kluwer, Boston, MA, pp. 203–220.Google Scholar
  10. Bota M., Dong H.-W., and Swanson L.W. (2003) From gene networks to neural networks. Nat. Neurosci. 6(8), 795–799.PubMedCrossRefGoogle Scholar
  11. Bowden D.M. and Martin R.F. (1995) NeuroNames brain hierarchy. Neuroimage, 2(1), 63–83.PubMedCrossRefGoogle Scholar
  12. Bowden D.M. and Martin R.F. (1997) A digital Rosetta stone for primate brain terminology. In Bloom F.E, Bjorklund A., and Hokfelt, T. (eds), Handbook of Chemical Neuroanatomy vol. 13, The Primate Nervous System, part 1, Elsevier Science, Amsterdam, pp. 1–37.Google Scholar
  13. Bowden D.M. and Dubach M. (2002) BrainInfo. An Online Interactive Brain Atlas and Nomenclature. In Kotter, R. ed., Neuroscience Databases, Kluwer, pp. 259–274.Google Scholar
  14. Bowden D.M. and Dubach M. (2003) Neuronames 2002. Neuroinformatics 1(1), 43–59.PubMedCrossRefGoogle Scholar
  15. Brodmann K. (1905) Beiträge zur histologischen Lokalisation der Grosshirnrinde Die Rindenfeldern der niederen Affen. J. Psychol. Neurol, 4, 117.Google Scholar
  16. Burns G.A.P.C (1997) Neural connectivity of the rat, Theory, methods and applications. Oxford University D.Phil. Thesis.Google Scholar
  17. Burns G.A.P.C. (2001a) Knowledge mechanics and the NeuroScholar project, a new approach to neuroscientific theory. In Arbib M.A. and Grethe J. (eds) Computing the Brain, A Guide to Neuroinformatics, Academic Press, San Diego, CA, pp. 319–336.Google Scholar
  18. Burns G. A. P. C. (2001b) Knowledge Management of the Neuroscientific literature, the data model and underlying strategy of the NeuroScholar system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356(1412), 1187–1208.PubMedCrossRefGoogle Scholar
  19. Burns G. A. P. C., Stephan K.E., Ludäscher B., Gupta A., and Kötter, R. (2001). Towards a federated neuroscientific knowledge management system using brain atlases. Neurocomputing, 38–40, 1633–1641.CrossRefGoogle Scholar
  20. Burns G. A. P. C., Khan A. M., Ghandeharizadeh S., O’Neill M. A., and Chen Y. -S. (2003) Tools and approaches for the construction of knowledge Models from the neuroscientific literature. Neuroinformatics 1(1), 81–109.PubMedCrossRefGoogle Scholar
  21. Butler A. B. (1994a) The evolution of the dorsal pallium in the telencephalon of amniotes, cladistic analysis and a new hypothesis. Brain Res. Brain Res. Rev. 19(1), 66–101.PubMedCrossRefGoogle Scholar
  22. Butler A. B. (1994b) The evolution of the dorsal thalamus of jawed vertebrates, including mammals, cladistic analysis and a new hypothesis. Brain Res. Brain Res. Rev, 19(1), 29–65.PubMedCrossRefGoogle Scholar
  23. Butler A. B. and Hodos, W. (1996) Comparative vertebrate neuroanatomy, evolution and adaptation. New York, Wiley-Liss, pp. 7–13.Google Scholar
  24. Campbell A.W. (1905) Histological studies on the localization of cerebral function. Cambridge University Press, London.Google Scholar
  25. Campbell C. B. and Hodos W. (1970) The concept of homology and the evolution of the nervous system. Brain Behav. Evol. 3(5), 353–367.PubMedGoogle Scholar
  26. Campbell C. B. and Hodos W. (1991) The Scala naturae revisited, evolutionary scales and anagenesis in comparative psychology. J. Comp. Psychol. 105(3), 211–221.PubMedCrossRefGoogle Scholar
  27. Carroll R.L. (1988). Vertebrate paleontology and evolution. W.H. Freeman and Company, New York.Google Scholar
  28. Cavada C. and Goldman-Rakic P. S. (1989a) Posterior parietal cortex in rhesus monkey, I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J. Comp. Neurol. 287(4), 393–421.PubMedCrossRefGoogle Scholar
  29. Cavada C. and Goldman-Rakic P. S. (1989b) Posterior parietal cortex in rhesus monkey, II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287(4), 422–445.PubMedCrossRefGoogle Scholar
  30. de Beer G. R. (1971) Homology, an unsolved problem, Oxford University Press, London.Google Scholar
  31. Ding S. L., Van Hoesen G., and Rockland K. S. (2000) Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas. J. Comp. Neurol. 425(4), 510–530.PubMedCrossRefGoogle Scholar
  32. Egenhofer M. and Frank A. (1992) Object-Oriented Modeling for GIS. Journal of the Urban and Regional Information Systems Association, 4(2), 3–19.Google Scholar
  33. Egenhofer M. and Franzosa, R. (1991) Point-Set Topological Spatial Relations. International Journal of Geographical Information Systems, 5(2), 161–174.CrossRefGoogle Scholar
  34. Feldman M.L. (1990) Morphology of the neocortical neuron. In Peters A. and Jones E.G (eds), Cerebral Cortex. Volume I, Cellular components of the cerebral cortex, Plenum Press, New York, pp. 123–200.Google Scholar
  35. Felleman D. J., Burkhalter A., and Van Essen D. C. (1997) Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex. J. Comp. Neurol. 379(1), 21–47.PubMedCrossRefGoogle Scholar
  36. Galaburda A. M. and Pandya D. N. (1982) Role of architectonics and connections in the study of primate brain evolution. In Amstrong E. and Falk D. (eds), Primate brain evolution, methods and concepts, Plenum Press, New York, pp. 203–216.Google Scholar
  37. Gerfen C. R. and Sawchenko P. E. (1984) An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals, immunohistochemical techniques. Brain Res. 210(1–2), 31–51.Google Scholar
  38. Hall B. K. (1994) Introduction. In Hall B.K. (ed), Homology, the hierarchical basis of comparative biology, Academic Press, San Diego, CA, pp. 1–21.Google Scholar
  39. Hodos W. and Butler A. B. (1997) Evolution of sensory pathways in vertebrates. Brain Behav. Evol. 50(4), 189–197.PubMedGoogle Scholar
  40. Huerta M. F., Krubitzer L. A., and Kaas J. H. (1987) Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys. II. Cortical connections. J. Comp. Neurol. 265(3), 332–361.PubMedCrossRefGoogle Scholar
  41. Johnson J. I., Kirsch J. A., Reep R. L., and Switzer, R. C. (1994) Phylogeny through brain traits, more characters for the analysis of mammalian evolution. Brain Behav. Evol. 43(6), 319–347.PubMedGoogle Scholar
  42. Jones E. G. (1990a) History of cortical cytology. In Peters, A. and Jones, E. G. (eds), Cerebral Cortex. Volume I, Cellular components of the cerebral cortex, Plenum Press, New York, pp. 1–34.Google Scholar
  43. Jones E. G. (1990b) Neurogliaform or spiderweb cells. In Peters, A. and Jones, E. G (eds), Cerebral Cortex. Volume I, Cellular components of the cerebral cortex, Plenum Press, New York, pp. 385–408.Google Scholar
  44. Jones E. G. and Hendry H. S. C (1990) Basket Cells. In Peters, A. and Jones, E. G. (eds), Cerebral Cortex. Volume I, Cellular components of the cerebral cortex, Plenum Press, New York, pp. 309–336.Google Scholar
  45. Kaas J. H. (1995) The evolution of isocortex. Brain Behav. Evol. 46(4–5), 187–196.PubMedGoogle Scholar
  46. Kaas J. H. (2002) Convergences in the modular and areal organization of the forebrain of mammals, implications for the reconstruction of forebrain evolution, Brain Behav. Evol, 59(5–6), 235–239.Google Scholar
  47. Kirsch J. A. and Johnson J. I. (1983) Phylogeny through brain traits, trees generated by neural characters. Brain Behav. Evol, 22(2–3), 60–69.PubMedGoogle Scholar
  48. Kolb B. (1990). Posterior Parietal and Temporal Association Cortex. In Kolb, B. and Tees, R. C. (eds.), The Cerebral Cortex of the Rat. Cambridge, MA, The MIT Press, pp. 459–471Google Scholar
  49. Kötter R., Hilgetag C. C., and Stephan K. E. (2001) Connectional characteristics of areas in Walker’s map of primate prefrontal cortex. Neurocomputing, 38–40, 741–746.CrossRefGoogle Scholar
  50. Krieg W. J. S. (1947) Connections of the cerebral cortex. I. The albino rat. A topography of the cortical areas. J. Comp. Neurol. 84, 221–275.CrossRefGoogle Scholar
  51. Krubitzer L. A. and Huffman K. J. (2000) A realization of the neocortex in mammals, genetic and epigenetic contributions to the phenotype. Brain Behav. Evol. 55(6), 322–335.PubMedCrossRefGoogle Scholar
  52. Krubitzer L. A. (1995) The organization of neocortex in mammals, are species differences really so different? Trends Neurosci. 18(9), 408–417.PubMedCrossRefGoogle Scholar
  53. Krubitzer L. A. (2000) How does evolution build a complex brain? Novartis Foundation Symposium, 228, 206–220.PubMedGoogle Scholar
  54. Krubitzer L. A. and Kaas, J. H. (1990) Cortical connections of MT in four species of primates, areal, modular, and retinotopic patterns. Vis. Neurosci. 5(2), 165–204.PubMedCrossRefGoogle Scholar
  55. Krubitzer L. A. and Kaas, J. H. (1993) The dorsomedial visual area of owl monkeys, connections, myeloarchitecture, and homologies in other primates. J. Comp. Neurol. 343(4), 497–528.CrossRefGoogle Scholar
  56. Krubitzer L. A., Sesma M. A., and Kaas J. H. (1986) Microelectrode maps, myeloarchitecture, and cortical connections of three somatotopically organized representations of the body surface in the parietal cortex of squirrels. J. Comp. Neurol. 250(4), 403–430.PubMedCrossRefGoogle Scholar
  57. Kuhlenbeck H. (1973) The central nervous of vertebrates. Volume 3, Part 2, Overall morphologic pattern, Karger, Basel, Switzerland.Google Scholar
  58. Kuhlenbeck H. (1978) The central nervous of vertebrates. Volume 5, Part II, Mammalian telencephalon, Surface morphology and the vertebrate neuraxis as a whole, Karger, Basel, Switzerland, pp. 159–304.Google Scholar
  59. Kuypers H. G., Bentivoglio M., Van der Kooy, D., and Catsman-Berrevoets C. E. (1979) Retrograde transport of bisbenzimide and propidium iodide through axons to their parent cell bodies. Neurosci. Lett. 12(1), 1–7.PubMedCrossRefGoogle Scholar
  60. Lewis J. W. and Van Essen D. C. (2000a) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428(1), 112–137.PubMedCrossRefGoogle Scholar
  61. Lewis J. W. and Van Essen D. C. (2000b) Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J. Comp. Neurol. 428(1), 79–111.PubMedCrossRefGoogle Scholar
  62. Llewellyn-Smith I. J., Pilowski P., and Minson J. B. (1992) Retrograde tracers for light and electron microscopy. In Bolam, J.P. (ed), Experimental Neuroanatomy, A Practical Approach, Oxford University Press, Oxford, UK, pp. 31–60.Google Scholar
  63. Luppino G. and Rizzolatti G. (2000) The Organization of the Frontal Motor Cortex. News Physiol. Sci. 219–224.Google Scholar
  64. Marenco L., Nadkarni P., Skoufos E., Shepherd G., and Miller P. (1999) Neuronal database integration, the Senselab EAV data model. Proceedings of AMIA Symposium, 102–106.Google Scholar
  65. Matelli M. and Luppino G. (2000) Parietofrontal circuits, parallel channels for sensory-motor integrations. Adv. Neurol. 84, 51–61.PubMedGoogle Scholar
  66. Matelli M., Camarda R., Glickstein M., and Rizzolatti G. (1986) Afferent and efferent projections of the inferior area 6 in the macaque monkey. J. Comp. Neurol. 251(3), 281–298.PubMedCrossRefGoogle Scholar
  67. Matelli M., Govoni P., Galletti C., Kutz D.F., and Luppino G. (1998) Superior area 6 afferents from the superior parietal lobule in the macaque monkey. J. Comp. Neurol. 402(3), 327–352.PubMedCrossRefGoogle Scholar
  68. Matelli M., Luppino G., and Rizzolatti G. (1985) Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav. Brain Res. 18(2), 125–136.PubMedCrossRefGoogle Scholar
  69. Matelli M., Luppino G., and Rizzolatti G. (1991) Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J. Comp. Neurol. 311(4), 445–462.PubMedCrossRefGoogle Scholar
  70. Medina L. and Reiner A. (1995) Neurotransmitter organization and connectivity of the basal ganglia in vertebrates, implications for the evolution of basal ganglia. Brain Behav. Evol. 46(4–5), 235–258.PubMedGoogle Scholar
  71. Nelson G. (1994) Homology and systematics. In Hall B.K. (ed), Homology, the hierarchical basis of comparative biology, Academic Press, San Diego, CA, pp. 102–151.Google Scholar
  72. Nieuwenhuys R. (1998) Comparative Neuroanatomy, place, principles and programme. In Nieuwenhuys R., ten Donkelaar H. C., and Nicholson C. (eds.) The central nervous system of vertebrates, Volume 1. Springer, New York, pp. 273–326.Google Scholar
  73. Northcutt R.G. (1984) Evolution of the vertebrate nervous system: patterns and processes. American Zoologist 24, 701–716.Google Scholar
  74. Northcutt R.G. and Kaas J.H. (1995) The emergence and evolution of mammalian neocortex. Trends Neurosci. 18(9), 373–379.PubMedCrossRefGoogle Scholar
  75. Pandya D. N. and Seltzer B. (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp. Neurol. 204(2), 196–210.PubMedCrossRefGoogle Scholar
  76. Papadias D. and Sellis T. (1994) Qualitative Representation of Spatial Knowledge in Two Dimensional Space. Very Large Data Bases Journal, 3(4), 479–516.CrossRefGoogle Scholar
  77. Paxinos G. and Watson C. (1986) The rat brain in stereotaxic coordinates. San Diego, Academic Press.Google Scholar
  78. Preuss T. M. and Goldman-Rakic P.S. (1991) Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp. Neurol. 310(4), 429–474.PubMedCrossRefGoogle Scholar
  79. Preuss T. M., Stepniewska I., Jain N., and Kaas J. H. (1997) Multiple divisions of macaque precentral motor cortex identified with neurofilament antibody SMI-32. Brain Res. 767(1), 148–153.PubMedCrossRefGoogle Scholar
  80. Price J. L., Russchen F. T., and Amaral, D. G. (1987) The limbic region, II, The amygdaloid complex. In Bjorklund A., Hokfelt T. and Swanson L.W. (eds.), Handbook of Chemical Neuroanatomy vol. 5, Integrated Systems in the CNS, part I. Hypothalamus, Hippocampus, Amygdala, Retina. Elsevier, pp. 279–388.Google Scholar
  81. Purvis A., Nee S., and Harvey P. H. (1995) Macroevolutionary inferences from primate phylogeny. Philos. Trans. R. Soc. Lond. B Biol. Sci. 260(1359), 329–333.CrossRefGoogle Scholar
  82. Purvis A. (1995) A composite estimate of primate phylogeny. Philos. Trans. R. Soc. Lond. B Biol. Sci. 348(1326), 405–421.PubMedCrossRefGoogle Scholar
  83. Reiner A. (1991) Levels of organization and the evolution of isocortex. Trends Neurosci. 19, 89–91.Google Scholar
  84. Reiner A., Medina L., and Veenman C.L. (1998) Structural and functional evolution of the basal ganglia in vertebrates. Brain Res, Brain Res. Rev. 28(3), 235–285.CrossRefGoogle Scholar
  85. Rizzolatti G., Camarda R., Fogassi L., Gentilucci M., Luppino G., and Matelli M. (1988) Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp Brain Res. 71(3), 491–507.PubMedCrossRefGoogle Scholar
  86. Rizzolatti G., Luppino G., and Matelli M. (1996) The classic supplementary motor area is formed by two independent areas. Adv. Neurol. 70, 45–56.PubMedGoogle Scholar
  87. Rizzolatti G., Luppino G., and Matelli M. (1998) The organization of the cortical motor system, new concepts. Electroencephalogr. Clin. Neurophysiol. 106(4), 283–296.PubMedCrossRefGoogle Scholar
  88. Sawchenko P. E. and Swanson L. W. (1981) A method for tracing biochemically defined pathways in the central nervous system using combined fluorescence retrograde transport and localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res. 290(2), 219–238.Google Scholar
  89. Sawchenko P. E., Cunninhgham E. T., Mortrud M. T., Pfeiffer S. W., and Gerfen S.W. (1990) Phaseoulus vulgaris leucoagglutinin anterograde axonal transport technique. In Methods in Neurosciences, vol.3, Academic Press, pp. 247–260.Google Scholar
  90. Scannell J. W., Burns G. A. P. C., Hilgetag C. C., O’Neil M. A., and Young M.P. (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex, 9(3), 277–299.PubMedCrossRefGoogle Scholar
  91. Seltzer B. and Pandya D. N. (1984) Further observations on parieto-temporal connections in the rhesus monkey. Exp. Brain Res. 55(2), 301–312.PubMedCrossRefGoogle Scholar
  92. Sharma, J. (1986) Integrated spatial reasoning in geographic information systems: continuing topology and direction. University of Maine, PhD Thesis.Google Scholar
  93. Skirboll L. R., Thor K., Helke C., Hokfelt T., Robertson B., and Long R. (1989) Use of retrograde fluorescent tracers in combination with immunohistochemical methods. In Heimer L. and Zaborsky L. (eds), Neuroanatomical Tract-Tracing Methods 2. Recent Progress, Plenum Press, New York, pp, 5–18.Google Scholar
  94. Smith Y. (1992) anterograde tracing with PHA-L and biocytin at the electron microscopic level. In Bolam J.P. (ed), Experimental Neuroanatomy, A Practical Approach, Oxford University Press, Oxford, UK, pp. 61–80.Google Scholar
  95. Stephan K. E. and Kötter R. (1998). A formal approach to the translation of cortical maps In Nicholls J., Torre V. (eds), Neural Circuits and Networks, Springer, Berlin, pp. 205–226.Google Scholar
  96. Stephan K. E., Hilgetag C. C., Burns G. A. P. C., O’Neill M. A., Young M. P., and Kotter R. (2000a) Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355(1393), 111–126.PubMedCrossRefGoogle Scholar
  97. Stephan K. E., Zilles K. and Kotter R. (2000b) Coordinate-independent mapping of structural and functional data by objective relational transformation (ORT). Philos. Trans. R. Soc. Lond. B Biol. Sci. 355(1393), 37–54.PubMedCrossRefGoogle Scholar
  98. Stephan K. E., Kamper L., Bozkurt A., Burns G. A. P. C., Young M. P., and Kötter R. (2001) Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philos. Trans. R. Soc. Lond. B Biol. Sci. 356(1412), 1159–1186.PubMedCrossRefGoogle Scholar
  99. Striedter G. F. (1999) Homology in the nervous system, of characters, embryology and levels of analysis. Novartis Foundation Symposium, 222, 158–170.PubMedGoogle Scholar
  100. Swanson L.W. (1992) Brain Maps, Structure of the Rat Brain, Elsevier, Amsterdam.Google Scholar
  101. Swanson L.W. (2000) Interactive brain maps and atlases. In Arbib M.A. and Grethe J. (eds) Computing the Brain, A Guide to Neuroinformatics, Academic Press, San Diego, CA, pp. 167–177.Google Scholar
  102. Van Valen L. (1982) Homology and causes. J. Morphol. 173,305–173,312.Google Scholar
  103. Vogt B. A. and Pandya D. N. (1987) Cingulate cortex of the rhesus monkey, II. Cortical afferents. J. Comp. Neurol. 262(2), 271–289.PubMedCrossRefGoogle Scholar
  104. Vogt C. and Vogt O. (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J. Psychol. Neurol. 25, 279.Google Scholar
  105. von Bonin G. and Bailey P. (1947) The neocortex of Macaca mulatta, University of Illinois Press, Urbana, IL.Google Scholar
  106. Walker A. E. (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J. Comp. Neurol. 73(1), 59–86.CrossRefGoogle Scholar
  107. Wake D. B. (1994) Introduction. In Sanderson M.J. and Hufford L. (eds) Homoplasy, the Recurrence of Similarity in Evolution, Academic Press, San Diego, CA, pp. xvii-xxv.Google Scholar
  108. Wiley E.O. (1981) Phylogenetics-the Theory and Practice of Phylogenetic Systematics, John Wiley, England.Google Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.NIBS Program in NeurosciencesUniversity of Southern CaliforniaLos Angeles
  2. 2.Computer Science, Neuroscience, and USC Brain ProjectUniversity of Southern CaliforniaLos Angeles

Personalised recommendations