Advertisement

Neuroinformatics

, Volume 1, Issue 4, pp 343–357 | Cite as

Genetic correlates of gene expression in recombinant inbred strains

A relational model system to explore neurobehavioral phenotypes
  • Elissa J. Chesler
  • Jintao Wang
  • Lu Lu
  • Yanhua Qu
  • Kenneth F. Manly
  • Robert W. Williams
Original Article

Abstract

Full genome sequencing, high-density genotyping, expanding sets of microarray assays, and systematic phenotyping of neuroanatomical and behavioral traits are producing a wealth of data on the mouse central nervous system (CNS). These disparate resources are still poorly integrated. One solution is to acquire these data using a common reference population of isogenic lines of mice, providing a point of integration between the data types. Recombinant inbred (RI) mice, derived through inbreeding of progeny from an inbred cross, are a powerful tool for complex trait mapping and analysis of the challenging phenotypes of neuroscientific interest. These isogenic RI lines are a retrievable genetic resource that can be repeatedly studied using a wide variety of assays. Diverse data sets can be related through fixed and known genomes, using tools such as the interactive web-based system for complex trait analysis, www.WebQTL.org. In this report, we demonstrate the use of WebQTL to explore complex interactions among a wide variety of traits—from mRNA transcripts to the impressive behavioral and pharmacological variation among RI strains. The relational approach exploiting a common set of strains facilitates study of multiple effects of single genes (pleiotropy) without a priori hypotheses required. Here we demonstrate the power of this technique through genetic correlation of gene expression with a database of neurobehavioral phenotypes collected in these strains of mice through more than 20 years of experimentation. By repeatedly studying the same panel of mice, early data can be re-examined in light of technological advances unforeseen at the time of their initial collection.

Index Entries

Behavioral genetics genetic correlation analysis relational databases QTL mapping recombinant inbred mice oligonucleotide microarray 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airey, D. C., Lu, L., Williams, R. W. (2001) Genetic control of the mouse cerebellum: identification of quantitative trait loci modulating size and architecture. J. Neurosci. 21, 5099–5109.Google Scholar
  2. Beach, T. G., Woodhurst, W. B., MacDonald, D. B., Jones, M. W. (1995) Reactive microglia in hippocampal sclerosis associated with human temporal lobe epilepsy. Neurosci. Lett. 191, 27–30.CrossRefGoogle Scholar
  3. Belknap, J. K. (1998). Effect of within-strain sample size on QTL detection and mapping using recombinant inbred mouse strains. Behav. Genet. 28, 29–38.CrossRefGoogle Scholar
  4. Buck, K. J., Metten, P., Belknap, J. K., Crabbe, J. C. (1997) Quantitative trait loci involved in genetic predisposition to acute alcohol withdrawal in mice. J. Neurosci. 17, 3946–3955.Google Scholar
  5. Chesler, E. J., Wilson, S. G., Lariviere, W. R., Rodriguez-Zas, S. L., Mogil, J. S. (2002a) Influences of laboratory environment on behavior. Nat. Neurosci. 5, 1101–1102.CrossRefGoogle Scholar
  6. Chesler, E. J., Wilson, S. G., Lariviere, W. R., Rodriguez-Zas, S. L., Mogil, J. S. (2002b) Indentification and ranking of genetic and laboratory environment factors influencing a behavioral trait, thermal nociception, via computational analysis of a large datta archive. Neurosci. Biohav. Rev. 26, 907–923.CrossRefGoogle Scholar
  7. Chesler, E. J., Rodriguez-Zas, S. L., Mogil, J. S. (2001) In silico mapping of mouse quantitative trait loci. Science. 294, 2423.CrossRefGoogle Scholar
  8. Crabbe, J. C., Belknap, J. K., Buck, K. J., Metten, P. (1994) Use of recombinant inbred strains for studying genetic determinants of responses to alcohol. Alcohol. Suppl. 2, 67–71.Google Scholar
  9. Crabbe, J. C., Kosobud, A., Young, E. R., Janowsky, J. S. (1983) Polygenic and single-gene determination of responses to ethanol in BXD/Ty recombinant inbred mouse strains. Neurobehav. Toxicol. Teratol. 5, 181–187.Google Scholar
  10. Crabbe, J. C., Wahlsten, D., Dudek, B. C. (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284, 1670–1672.CrossRefGoogle Scholar
  11. Darvasi, A. (2001) In silico mapping of mouse quantitative trait loci. Science 294, 2423.CrossRefGoogle Scholar
  12. Hain, H. S., Crabbe, J. C., Bergeson, S. E., Belknap, J. K. (2000) Cocaine-induced seizure thresholds: quantitative trait loci detection and mapping in two populations derived from the C57BL/6 and DBA/2 mouse strains. J. Pharmacol. Exp. Ther. 293, 180–187.Google Scholar
  13. Hamer, D. (2002) Genetics. Rethinking behavior genetics. Science 298, 71–72.CrossRefGoogle Scholar
  14. Hitzemann, R., Hitzemann, B., Rivera, S., et al. (2003) Dopamine D2 Receptor binding, Drd2 Expression and the number of dopamine neurons in the BXD recombinant inbred series: Genetic relationships to alcohol and other drug related phenotypes. Alc. Clin. Exp. Res. 27, 1–11.Google Scholar
  15. Janowsky, A., Mah, C., Johnson, R. A., et al. (2001) Mapping genes that regulate density of dopamine transporters and correlated behaviors in recombinant inbred mice. J. Pharmacol. Exp. Ther. 298, 634–643.Google Scholar
  16. Kirstein, S.L., Davidson, K.L., Ehringer, M.A., Sikela, J.M., Erwin, V.G., Tabakoff, B. (2002) Quantitative trait loci affecting initial sensitivity and acute functional tolerance to ethanol-induced ataxia and brain cAMP signaling in BXD recombinant inbred mice. J. Pharmacol. Exp. Ther. 302, 1238–1245.CrossRefGoogle Scholar
  17. Le Roy, I., Roubertoux, P.L., Jamot, L., et al. (1998) Neuronal and behavioral differences between Mus musculus domesticus (C57BL/6JBy) and Mus musculus castaneus (CAST/Ei). Behav. Brain Res. 95, 135–142.CrossRefGoogle Scholar
  18. Neumann, P.E., Seyfried, T. N. (1990) Mapping of two genes that influence susceptibility to audiogenic seizures in crosses of C57BL/6J and DBA/2J mice. Behav. Genet. 20, 307–323.CrossRefGoogle Scholar
  19. Paigen, K., Eppig, J. T. (2000) A mouse phenome project. Mamm Genome. 11, 715–717.CrossRefGoogle Scholar
  20. Palmer A. A., Miller M. N., McKinnon C. S., Phillips T. J. (2002) Sensitivity to the locomotor stimulant effects of ethanol and allopregnanolone is influenced by common genes. Behav. Neurosci. 116, 126–127.CrossRefGoogle Scholar
  21. Plomin, R., McClearn, G.E., Gora-Maslak, G., Neiderhiser, J.M. (1991) Use of recombinant inbred strains to detect quantitative trait loci associated with behavior. Behav. Genet. 21, 99–116.CrossRefGoogle Scholar
  22. Roberts, A. J., Phillips, T. J., Belknap, J. K., Finn, D. A., Keith, L. D. (1995) Genetic analysis of the corticosterone response to ethanol in BXD recombinant inbred mice. Behav. Neurosci. 109, 1199–1208.CrossRefGoogle Scholar
  23. Threadgill, D. W., Hunter, K. W., Williams, R. W. (2002) Genetic dissection of complex and quantitative traits: from fantasy to reality via a community effort. Mamm. Gen. 13, 175–178.CrossRefGoogle Scholar
  24. Vogel, G. (2003) Genetics. Scientists dream of 1001 complex mice. Science 301, 456–457.CrossRefGoogle Scholar
  25. Wang, J., Williams, R. W., and Manly, K. F. (2003) WebQTL: Web-based complex trait analysis. Neuroinformatics 1, 299–308.CrossRefGoogle Scholar
  26. Williams, R. W., Gu, J., Qi, S., Lu, L. (2001a) The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis. Genome Biol. 2, RESEARCH0046.Google Scholar
  27. Williams, R. W., Airey, D. C., Kulkarni, A., Zhou, G., Lu, L. (2001b) Genetic dissection of the olfactory bulbs of mice: QTLs on four chromosomes modulate bulb size. Behav. Genet. 31, 61–77.CrossRefGoogle Scholar
  28. Wong, C. G, Scherer, S. W., Snead, O. C. 3rd, Hampson, D. R. (2001) Localization of the human mGluR4 gene within an epilepsy susceptibility locus(1). Brain Res. Mol. Brain Res. 87, 109–116.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Elissa J. Chesler
    • 1
  • Jintao Wang
    • 2
  • Lu Lu
    • 1
  • Yanhua Qu
    • 1
  • Kenneth F. Manly
    • 2
  • Robert W. Williams
    • 1
  1. 1.Department of Anatomy and Neurobiology, Center for Genomics and BioinformaticsUniversity of Tennessee Health Science CenterMemphis
  2. 2.Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffalo

Personalised recommendations