Neurocritical Care

, Volume 1, Issue 3, pp 367–369 | Cite as

Use of propofol to control refractory involuntary movements

  • David V. Lardizabal
  • Vivek Sabharwal
  • Ali Jahan
  • Samay Jain
  • Christopher Snyder
  • Marc J. Popovich
  • Michael DeGeorgia
Practical Pearl

Abstract

The authors report the first case of propofol use for the control of non-epileptic involuntary movements in a patient with postviral encephalitis. The withdrawal from propofol was associated with re-emergence of involuntary movements. The patient was maintained on propofol infusion for 6 months while a series of medications were used in an attempt to control the movements. The movements were finally controlled with high doses of phenobarbital, diazepam, and olanzapine, and the propofol was slowly weaned.

Key Words

Propofol sedation involuntary movements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryson HM, Fulton BR, Faulds D. Propofol: an update of its use in anaesthesia and conscious sedation. Drugs 1995;50:513–559.PubMedGoogle Scholar
  2. 2.
    Langly MS, Heel RC. Propofol: a review of its pharmacodynamic and pharmacokinetic properties and use as an intravenous anaesthetic. Drugs 1998;33:334–372.Google Scholar
  3. 3.
    McCowan C, Marik P. Refractory delirium tremens treated with propofol: a case series. Crit Care Med 2000;28(6):1781–1784.PubMedCrossRefGoogle Scholar
  4. 4.
    Stecker MM, Kramer TH, Raps EC, O’Meeghan R, Dulaney E, Skaar DJ. Treatment of refractory status epileptics with propofol: clinical and pharmacokinetic findings. Epilepsia 1998;39(1):18–26.PubMedCrossRefGoogle Scholar
  5. 5.
    Williams DB, Akabas MH. Structural evidence that propofol stabilizes different GABA(A) receptor states at potentiating and activating concentrations. J Neurosci 2002;122(17):7417–7424.Google Scholar
  6. 6.
    Kanto J, Gepts E. Pharmacokinetic implications for the clinical use of propofol. Clin Pharmaco-kinetics 1989;17(5):308–326.Google Scholar
  7. 7.
    Bailie GR, Cockshott ID, Douglas EJ, Bowles BJ. Pharmacokinetics of propofol during and after long term continuous infusion for maintenance of sedation in ICU patients. Br J Anaesth 1992;68:486–491.PubMedCrossRefGoogle Scholar
  8. 8.
    Albanese J, Martin C, Lacarelle B, Saux P, Durand A, Govin F. Pharmacokinetics of long-term propofol infusion used for sedation in ICU patients. Anesthesiology 1990;73:214–217.PubMedCrossRefGoogle Scholar
  9. 9.
    Court MH, Duan SX, Hesse LM, et al. Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology 2001;94:110–119.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen TL, Ueng TH, Chen SH, et al. Human cytochrome P450 mono-oxygenase system is suppressed by propofol. Br J Anaesth 1995;74: 558–562.PubMedCrossRefGoogle Scholar
  11. 11.
    McKillop D, Wild MJ, Butters CJ, et al. Effects of propofol of human hepatic microsomal cytochrome P450 activities. Xenobiotica 1998;28: 845–853.PubMedCrossRefGoogle Scholar
  12. 12.
    Dawidowicz AL, Kalitynski R, Nestorowicz A, Fijalkowska A. Changes of propofol concentration in cerebrospinal fluid during continuous infusion. Anesth Analg 2002;95(5):1282–1284.PubMedCrossRefGoogle Scholar
  13. 13.
    Walder B, Tramer MR, Seeck M. Seizure-like phenomena and propofol: a systematic review. Neurology 2002;58(9):1327–1332.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • David V. Lardizabal
    • 1
  • Vivek Sabharwal
    • 2
  • Ali Jahan
    • 2
  • Samay Jain
    • 1
  • Christopher Snyder
    • 3
  • Marc J. Popovich
    • 2
  • Michael DeGeorgia
    • 1
  1. 1.Department of NeurologyThe Cleveland Clinic FoundationCleveland
  2. 2.Division of Anesthesiology and Critical Care MedicineCleveland Clinic FoundationCleveland
  3. 3.Department of PharmacyThe Cleveland Clinic FoundationCleveland

Personalised recommendations