, Volume 1, Issue 4, pp 353–360 | Cite as

Single-wall carbon nanotubes with adsorbed antibodies detect live breast cancer cells

  • Balaji Panchapakesan
  • Gregory Cesarone
  • Shaoxin Liu
  • Kasif Teker
  • Eric Wickstrom
Original Article


Monoclonal antibodies (mAb) specific to cell surface antigens overexpressed on cancer cells adsorbed to single-wall carbon nanotube (SWCNT) devices can bind to their antigens in a drop of buffer, resulting in a slight drop in conductance. Here we report detection of live breast cancer cells with a mAb-SWCNT device. We adsorbed mAb specific to insulin-like growth factor 1 receptor (IGF1R) onto interconnected SWCNT networks placed between lithographically patterned electrodes. Application of human BT474 breast cancer cells increased the conductance of the IGF1R-specific mAb-SWCNT devices by 3.0±0.1-fold, relative to nanotube devices with non specific mAb. Human MCF7 breast cancer cells, with greater IGF1R expression, increased the conductance by 8.0±0.2-fold, but R-cells lacking IGF1R did not. Receptor-specific mAb acted as specific nanoswitches that completed a circuit between the SWCNT and the cell surface receptors, elevating the device conductance. Such devices might detect circulating breast cancer cells in blood samples.

Key Words

Antibodies conductance Her2 IGF1 receptor single-wall carbon nanotube 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Müller, V. et al. (2005), Clinical Cancer Res. 11, 3678–3685.CrossRefGoogle Scholar
  2. 2.
    Pachmann, K. et al. (2005), Breast Cancer Res. 7, R975-R979.CrossRefGoogle Scholar
  3. 3.
    Ferrari, M. (2005), Nat. Rev. Cancer 5, 161–171.CrossRefGoogle Scholar
  4. 4.
    Tian, X. (2004), et al. J. Nucl. Med. 45, 2070–2082.Google Scholar
  5. 5.
    Bradley, K., Briman, M., Star, A., and Gruner, G. (2004), Nano Lett. 4, 253–256.CrossRefGoogle Scholar
  6. 6.
    Teker, K., Panchapakesan, B., and Wickstrom, E. (2005), IEEE Sensors (in press).Google Scholar
  7. 7.
    Teker, K. et al. (2005), Nanobiotechnology 1, 171–182.CrossRefGoogle Scholar
  8. 8.
    Le Roy, X. et al. (1991), Oncogene 6, 431–437.Google Scholar
  9. 9.
    Guvakova, M. A., and Surmacz, E. (1997), Experimental Cell Res. 231, 149–162.CrossRefGoogle Scholar
  10. 10.
    Martin, K. J. et al. (2000), Cancer Res. 60, 2232–2238.Google Scholar
  11. 11.
    Sell, C. et al. (1994), Mol Cell Biol. 14, 3604–3612.Google Scholar
  12. 12.
    Ruoff, R. S., and Lorents, D. C. (1995), Carbon 33, 925–930.CrossRefGoogle Scholar
  13. 13.
    Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C. (1996), Science of Fullerenes and Carbon Nanotubes. Academic Press, New York.Google Scholar
  14. 14.
    Ebbessen, T. W. (1997), Carbon Nanotubes: Preparation and Properties. CRC Press, Boca Raton, FL.Google Scholar
  15. 15.
    Bockrath, M., Cobden, D. H., and McEuen, P. L. et al. (1997), Science 275, 1922–1925.CrossRefGoogle Scholar
  16. 16.
    Yakobson, B. I., and Smalley, R. E. (1997), American Scientist 85, 324.Google Scholar
  17. 17.
    Ajayan, P. M. (1999), Chemical Review 99, 1787.CrossRefGoogle Scholar
  18. 18.
    Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., and Smalley, R. E. (1996), Nature 384, 147.CrossRefGoogle Scholar
  19. 19.
    DeHeer, W. A., Chatelian, A., and Ugarte, D. (1995), Science 270, 1179.CrossRefGoogle Scholar
  20. 20.
    Kong, J. et al. (2000), Science 287, 622–625.CrossRefGoogle Scholar
  21. 21.
    Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C. (2001), Science 294, 1317.CrossRefGoogle Scholar
  22. 22.
    Wong, S. S., Joselevich, E., Wolley, A., Cheung, C. L., and Lieber, C. M. (1998), Nature 394, 52.CrossRefGoogle Scholar
  23. 23.
    Kashino, A., Yudasaka, M., Zhang, M., and Ijima, S. (2001), Nano Lett. 1, 361.CrossRefGoogle Scholar
  24. 24.
    Georgakilas, V. et al. (2002), J. Am. Chem. Soc. 124, 760.CrossRefGoogle Scholar
  25. 25.
    Davis, J. J., Green, L. H. M., and Hill, H. A. O. et al. (1998), Inorgan. Chem. Acta 272, 261–266.CrossRefGoogle Scholar
  26. 26.
    Chen, R. J., Zhang, Y., Wang, D., and Dai, H. (2001), J. Am. Chem. Soc. 123, 3838.CrossRefGoogle Scholar
  27. 27.
    Star, A., Gabriel, J. C. P., Bradley, K., and Gruner, G. (2003), Nano Lett. 3, 459–463.CrossRefGoogle Scholar
  28. 28.
    Chen, R. J., Choi, H. C., and Bangsaruntip, S. et al. (2004), J. Am. Chem. Soc. 126, 1563.CrossRefGoogle Scholar
  29. 29.
    Erlanger, B. F., Chen, B. X., Zhu, M., and Brus, L. (2001), Nano Lett. 1, 465–467.CrossRefGoogle Scholar
  30. 30.
    Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T., and Yodh, A. G. (2003), Nano Lett. 3, 269–273.CrossRefGoogle Scholar
  31. 31.
    Matarredona, O. et al. (2003), J. Phys. Chem. B 107, 13,357–13,367.CrossRefGoogle Scholar
  32. 32.
    Teker, K., Cesarone, G., Wickstrom, E., and Panchapakesan, B. (2005), paper presented at the Nanotech 2005, Anaheim, CA 2005.Google Scholar
  33. 33.
    Chang, H., Lee, J. D., Lee, S. M., and Lee, Y. H. (2001), Appl. Phys. Lett. 79, 3863.CrossRefGoogle Scholar
  34. 34.
    Kong, J., Dai, H. (2001), J. Phys. Chem. B. 105, 2890.CrossRefGoogle Scholar
  35. 35.
    Bradley, K., Gabriel, J. C., Briman, M., Star, A., and Gruner, G. (2003), Phys. Rev. Lett. 91, 21,8301.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Balaji Panchapakesan
    • 1
  • Gregory Cesarone
    • 2
  • Shaoxin Liu
    • 1
  • Kasif Teker
    • 1
  • Eric Wickstrom
    • 2
    • 3
  1. 1.Delaware MEMS and Nanotechnology Laboratory, Department of Electrical and Computer EngineeringUniversity of DelawareNewark
  2. 2.Department of Biochemistry and Molecular BiologyThomas Jefferson UniversityPhiladelphia
  3. 3.Department of Biochemistry and Molecular Biology, Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphia

Personalised recommendations