Advertisement

NanoBiotechnology

, Volume 1, Issue 3, pp 227–236 | Cite as

Gold functionalized nano-needles for angular protein movement visualization

  • A. R. Laine
  • D. Okuno
  • K. Tabata
  • Y. Okada
  • A. Tixier-Mita
  • H. Noji
  • H. Fujita
Original Article

Abstract

We have investigated and compared various methods of fabricating silicon nano-needles of 100–200 nm in diameter and 1–2 µm in length for visualization of motor protein movement. Owing to their thin and long geometry, the needles are ideal to amplify and visualize angular movement. To enable highly localized protein attachment, a well-defined attachment point at one end of the needles was prepared. Fabrication by electron-beam lithography as well as by a highly parallel non-lithographic process were implemented and compared. Sensitive angular motion amplification was demonstrated by attachment of needles to F1 ATPase rotation motor proteins. In this report we characterize the fabrication processes, discuss the differences, and present the results of motor protein motion visualization.

Key Words

Nano-needle motor molecule electron-beam lithography protein movement visualization localized attachment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nishizaka, T., Oiwa, K., Noji, H., et al. (2004), Nature Struct. Mol. Biol. 11(2), 142–148.CrossRefGoogle Scholar
  2. 2.
    Noji, H., Yasuda, R., Yoshida, M., and Kinosita Jr., K. (1997). Nature 386, 299–302.CrossRefGoogle Scholar
  3. 3.
    Wu, Y., Yan, H., Huang, M., Messer, B., Song, J. H., and Yang, P. (2002), Chem. Eur. J. 8(6), 1261–1268.CrossRefGoogle Scholar
  4. 4.
    Morales, A. M. and Lieber, C. M. (1998), Science 279, 208–211.CrossRefGoogle Scholar
  5. 5.
    Martensson, T., Carlberg, P., Borgstrom, M., Monelius, L., Seifert, W., and Samuelson, L. (2004), Nano Lett. 4(4), 699–702.CrossRefGoogle Scholar
  6. 6.
    Park, W. I., Yi, G.-C., Kim, M., and Pennycook, S. J. (2002), Adv. Mater. 14(24), 1841–1843.CrossRefGoogle Scholar
  7. 7.
    Prinz, A. V., Prinz, V. Ya., and Seleznev, V. A. (2003), Microelectronic Engineering 67–68, 782–788.CrossRefGoogle Scholar
  8. 8.
    Hanein, Y., Schabmueller, C. G. J., Holman, G., Luecke, P., Denton, D. D., and Boehringer, K. F. (2003), J. Micromech. Microeng. 13, S91-S95.CrossRefGoogle Scholar
  9. 9.
    Ovchinnikov, V., Malinin, A., Norikov, S., and Tuovinen, C. (1999), Phys. Scripta T79, 263–265.CrossRefGoogle Scholar
  10. 10.
    Soong, R. K., Bachand, G. D., Neves, H. P., Olkhovets, A. G., Craighead, H. G., and Montemagno, C. D. (2000), Science 290, 1555–1558.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • A. R. Laine
    • 1
  • D. Okuno
    • 1
  • K. Tabata
    • 1
  • Y. Okada
    • 2
  • A. Tixier-Mita
    • 1
  • H. Noji
    • 1
  • H. Fujita
    • 1
  1. 1.Institute of Industrial ScienceThe University of TokyoTokyoJapan
  2. 2.Graduate School of MedicineThe University of TokyoTokyoJapan

Personalised recommendations