, Volume 1, Issue 1, pp 35–42 | Cite as

Long-term biocompatibility of NanoGATE drug delivery implant

  • Robbie J. Walczak
  • Anthony Boiarski
  • Michael Cohen
  • Teri West
  • Kristie Melnik
  • John Shapiro
  • Sadhana Sharma
  • Mauro Ferrari
Original Article


The fouling of components and the formation of a fibrotic tissue capsule around subcutaneously implanted medical devices are two major obstacles in developing viable, long-term implantable drug delivery systems. NanoGATE is a subcutaneous implant designed for constant-output passive diffusion of a drug of interest through a silicon nanopore membrane. To this end, we have investigated the long-term in vivo biocompatibility of the NanoGATE implant in terms of the fouling of the nanopore membrane and the formation of a fibrotic tissue capsule around the implant. We have also evaluated how these effects influence diffusion of a lysozyme surrogate from the device once implanted within the vascular compartment of a Sprague-Dawley rat model. Using several model biomolecules such as glucose, lysozyme, and albumin, our studies suggest that silicon nanopore membranes do not foul when implanted subcutaneously for 6 mo. This study also reveals the tissue capsule that naturally forms around the implant does not limit diffusion of molecules with molecular weights on the order of 14.4 kDa at therapeutic delivery rates of tens of micrograms per day. This indicates that our NanoGATE implant should be completely functional in vivo, providing constant release levels of a drug over an extended time period. Thus, by adjusting the release rate to fit the pharmacokinetic clearance profile of the Sprague-Dawley rat, long-term steady-state blood plasma concentrations can be achieved.

Key Words

Silicon nanopore membrane NanoGATE biocompatibility drug delivery implant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, J. (1994) In: Problems in General Surgery. Klitzman B. (ed.). J. B. Lippincott, Philadelphia, PA.Google Scholar
  2. 2.
    Wisniewski, N., Klitzman, B., Miller, B., and Reichert, W. M. (2001), J. Biomed. Mater. Res. 57, 513–521.CrossRefGoogle Scholar
  3. 3.
    Ratner, B. D., Hoffman, A. S., Schoen, F. J., and Lemons, J. E. (eds.), (1996), Biomaterials Science. An introduction to Materials in Medicine. Academic Press, San Diego, CA.Google Scholar
  4. 4.
    Babensee, J. E., Anderson, J. M., McIntire, L. V., and Mikos, A. G. (1998), Adv. Drug Deliv. Rev. 33, 111–139.CrossRefGoogle Scholar
  5. 5.
    Brauker, J. H., Carr-Brendel, V. E., Martinson, L. A., Crudele, J., Johnston, W. D., and Johnson, R. C. (1995), J. Biomed. Mater. Res. 29, 1517–1524.CrossRefGoogle Scholar
  6. 6.
    De Vos, P., Hillebrands, J-L., De Haan, B. J., Strubbe, J. H., and Van Schilfgaarde, R. (1997), Transplantation 63, 824–830.CrossRefGoogle Scholar
  7. 7.
    Mikos, A. G., Sarakinos, G., Lyman, M. D., Ingber, D. E., Vacanti, J. P., and Langer, R. (1993), Biotechnol. Bioeng. 42, 716–723.CrossRefGoogle Scholar
  8. 8.
    Picha, G. J. and Drake, R. F. (1996), J. Biomed. Mater. Res. 30, 305–312.CrossRefGoogle Scholar
  9. 9.
    Salzmann, D. L., Kleinert, L. B., Berman, S. S., and Williams, S. K. (1997), J. Biomed. Mater. Res. 34, 463–476.CrossRefGoogle Scholar
  10. 10.
    Siebers, U., Sturm, R., Renardy, M., et al. (1990), In: Methods in Islet Transplantation, Federlin, K., Bretzel, R. G., and Hering, B. J., (eds.). Georg Thieme, Stuttgart, pp. 206–208.Google Scholar
  11. 11.
    Wake, M. C., Patrick, C. W., and Mikos, A. G. (1994), Cell Transplant. 3, 339–343.Google Scholar
  12. 12.
    Desai, T. A., Popat K. C., and Sharma, S. (2002), In: Business Briefing: Medical Device Manufacturing and Technology. World Markets Research Center, London, pp. 80–82.Google Scholar
  13. 13.
    Gilligan, B. J., Shults, M. C., Rhodes, R. K., and Updike, S. J. (1994), Diabetes Care 17(8), 882–887.CrossRefGoogle Scholar
  14. 14.
    Mercado, R. C. and Moussy, F. (1998), Biosens. Bioelectron 13(2), 133–145.CrossRefGoogle Scholar
  15. 15.
    Moussy, F., Harrison, D. J., and Rajotte, R. V. (1994), Int. J. Artif. Organ 17, 95–101.Google Scholar
  16. 16.
    Desai, T. A., Hansford, D. J., Kulinsky, L., et al. (1999), Biomed. Microdev. 2(1), 11–40.CrossRefGoogle Scholar
  17. 17.
    Desai, T. A., Hansford, D. J., Leoni, L., Essenpreis, M., and Ferrari, M. (2000), Nanoporous antifouling silicon membranes for biosensor applications. Biosens. Bioelectron 15, 453–462.CrossRefGoogle Scholar
  18. 18.
    Desai, T. A., Ferrari, M., and Mazzoni, G. (1995), Materials and Design Technology, Kozik, T. (ed.) ASME, New York, pp. 97–103.Google Scholar
  19. 19.
    Sharma, S., Popat, K. C., and Desai, T. A. (2002), Langmuir 18(23), 8728–8731.CrossRefGoogle Scholar
  20. 20.
    Anderson, J. M. and Langone, J. J. (1999), J. Control Release 57(2), 107–113.CrossRefGoogle Scholar
  21. 21.
    Fournier, E., Passirani, C., Montero-Menei, C. N., and Benoit, J. P. (2003), Biomaterials 24(19), 3311–3331.CrossRefGoogle Scholar
  22. 22.
    Giavaresi, G., Tschon M., Borsari, V., et al. (2004), Biomed. Pharmacother. 58(8), 411–417.CrossRefGoogle Scholar
  23. 23.
    Kotzar, G., Freas, M., Abel, P., et al. (2002), Biomaterials 23(13), 2737–2750.CrossRefGoogle Scholar
  24. 24.
    Park, H. and Park, K. (1996), Pharmaceutical Research 13(12), 1770–1776.CrossRefGoogle Scholar
  25. 25.
    Risbud, M. V. and Bhonde, R. R. (2000), Drug Deliv. 7(2), 69–75.CrossRefGoogle Scholar
  26. 26.
    Shastri, V. P., Padera, R. F., Tarcha, P., and Langer, R. (2004), Biomaterials 25(4), 715–721.CrossRefGoogle Scholar
  27. 27.
    Voskerician, G., Shive, M. S., Shawgo, R. S., et al. (2003), Biomaterials 24(11), 1959–1967.CrossRefGoogle Scholar
  28. 28.
    Wood, R. C., LeCluse, E. L., and Fix, J. A. (1995), Biomaterials 16(12), 957–959.CrossRefGoogle Scholar
  29. 29.
    Martin, F., Walczak, R., Boiarski, A. et al. (2005). J. Controlled Release 102(1), 123–133.CrossRefGoogle Scholar
  30. 30.
    Lave, T., Levet-Trafit, B., Schmitt-Hoffmann, A., Morgenroth, B., Richter, W., and Chou, R.C. (1995), J. Pharm. Sci. 84(11), 1285–1290.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Robbie J. Walczak
    • 1
  • Anthony Boiarski
    • 1
  • Michael Cohen
    • 1
  • Teri West
    • 1
  • Kristie Melnik
    • 1
  • John Shapiro
    • 2
  • Sadhana Sharma
    • 2
  • Mauro Ferrari
    • 2
    • 3
  1. 1.iMEDD, Inc.ColumbusUSA
  2. 2.Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusUSA
  3. 3.Department of Internal Medicine, Division of Hematology and OncologyThe Ohio State UniversityColumbusUSA

Personalised recommendations