Molecular Neurobiology

, Volume 33, Issue 1, pp 33–50 | Cite as

From radial glia to pyramidal-projection neuron

Transcription factor cascades in cerebral cortex development


Pyramidal-projection neurons are glutamatergic neurons that develop from progenitors in the ventricular and subventricular zones of the embryonic cortex. Recently, much has been learned about the cortical progenitor cells and the cellular and molecular mechanisms by which the produce projection neurons. We now know that radial glia are the progenitors of most or all projection neurons and that they generate neurons by two distinct mitotic sequences: direct neurogenesis to produce a single daughter neuron or indirect neurogenesis to produce two to four neurons via intermediate progenitor cells. The underlying genetic programs for proliferation and differentiation are controlled and implemented by specific transcription factors, whose interactions largely determine the cortical surface area, thickness, and neuronal subtype composition. In turn, transcription factor expression is modulated by extrinsic signals from patterning centers and adjacent cells and by intrinsic signals distributed asymmetrically within progenitors and daughter cells. Together, the new findings provide a coherent framework for understanding cortical neurogenesis.

Index Entries

Basal progenitor intermediate progenitor cell Pax6 subventricular zone Tbr1 Tbr2 ventricular zone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meinecke D. L. and Peters A. (1987) GABA immunoreactive neurons in rat visual cortex. J. Comp. Neurol. 261, 388–404.PubMedGoogle Scholar
  2. 2.
    Hendry S. H. C., Schwark H. D., Jones E. G., and Yan J. (1987) Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J. Neurosci. 7, 1503–1519.PubMedGoogle Scholar
  3. 3.
    Peduzzi J. D. (1988) Genesis of GABA-immunoreactive neurons in the ferret visual cortex. J. Neurosci. 8, 920–931.PubMedGoogle Scholar
  4. 4.
    Anderson S. A., Eisenstat D. D., Shi L., and Rubenstein J. L. R. (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476.PubMedGoogle Scholar
  5. 5.
    Tan S.-S., Kalloniatis M., Sturm K., Tam P. P., Reese B. E., and Faulkner-Jones B. (1998) Separate progenitors for radial and tangenital cell dispersion during development of the cerebral neocortex. Neuron 21, 295–304.PubMedGoogle Scholar
  6. 6.
    Marín O. and Rubenstein J. L. R. (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat. Rev. Neurosci. 2, 780–790.PubMedGoogle Scholar
  7. 7.
    Schuurmans C. and Guillemot F. (2002) Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr. Opin. Neurobiol. 12, 26–34.PubMedGoogle Scholar
  8. 8.
    Job C. and Tan S.-S. (2003) Constructing the mammalian neocortex; the role of intrinsic factors. Dev. Biol. 257, 221–232.PubMedGoogle Scholar
  9. 9.
    Fishell G. and Kriegstein A. R. (2003) Neurons from radial glia: the consequences of asymmetric inheritance. Curr. Opin. Neurobiol. 13, 34–41.PubMedGoogle Scholar
  10. 10.
    Rakic P. (2003a) Elusive radial glial cells: historical and evolutionary perspective. Glia 43, 19–32.PubMedGoogle Scholar
  11. 11.
    Rakic P. (2003b) Developmental and evolutionary adaptations of cortical radial glia. Cereb. Cortex 13, 541–549.PubMedGoogle Scholar
  12. 12.
    Cajal, S. Ramón y (1899, 1904, 1909, 1911) Histology of the Nervous System. (Translated from the French version of the original Spanish by Swanson N. and Swanson L. W.) New York: Oxford University Press 1995), Volume 2, p. 697.Google Scholar
  13. 13.
    Boulder Committee (1970) Embryonic vertebrate central nervous system: revised terminology. Anat. Rec. 166, 257–261.Google Scholar
  14. 14.
    Levitt P., Cooper M. L., and Rakic P. (1981) Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis. J. Neurosci. 1, 27–39.PubMedGoogle Scholar
  15. 15.
    Levitt P., Cooper M. L., and Rakic P. (1983) Early divergence and changing proportions of neuronal and glial precursor cells in the primate cerebral ventricular zone. Dev. Biol. 96, 472–484.PubMedGoogle Scholar
  16. 16.
    Rakic P. (1988) Specification of cerebral cortical areas. Science 241, 170–176.PubMedGoogle Scholar
  17. 17.
    Smart J. H. M. (1973) Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. J. Anat. 116, 67–91.PubMedGoogle Scholar
  18. 18.
    Takahashi T., Nowakowski R. S., and Caviness V. S. Jr. (1995) Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J. Neurosci. 15, 6058–6068.PubMedGoogle Scholar
  19. 19.
    Malatesta P., Hartfuss E., and Götz M. (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263.PubMedGoogle Scholar
  20. 20.
    Noctor S. C., Flint A. C., Weissman T. A., Dammerman R. S., and Kriegstein A. R. (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720.PubMedGoogle Scholar
  21. 21.
    Miyata T., Kawaguchi A., Okano H., and Ogawa M. (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741.PubMedGoogle Scholar
  22. 22.
    Malatesta P., Hack M. A., Hartfuss E., et al. (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37, 751–764.PubMedGoogle Scholar
  23. 23.
    Anthony T. E., Klein C., Fishell G., and Heintz N. (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41, 881–890.PubMedGoogle Scholar
  24. 24.
    Götz M. and Barde Y. A. (2005) Radial glial cells: defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 46, 369–372.PubMedGoogle Scholar
  25. 25.
    Noctor S. C., Martínez-Cerdeño V., Ivic L., and Kriegstein A. R. (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144.PubMedGoogle Scholar
  26. 26.
    Haubensak W., Attardo A., Denk W., and Huttner W. B. (2004) Neurons arise in the basel neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl. Acad. Sci. USA. 101, 3196–3201.PubMedGoogle Scholar
  27. 27.
    Miyata T., Kawaguchi A., Saito K., Kawano M., Muto T., and Ogawa M. (2004) Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131, 3133–3145.PubMedGoogle Scholar
  28. 28.
    Kamel Y., Inagaki N., Nishizawa M., Tsutsumi O., Taketani Y., and Inagaki M. (1998) Visualization of mitotic radial glial lineage cells in the developing rat brain by Cdc2 kinase-phosphorylated vimentin. Glia 23, 191–199.Google Scholar
  29. 29.
    Tabata H. and Nakajima K. (2003) Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J. Neurosci. 23, 9996–10,001.PubMedGoogle Scholar
  30. 30.
    Nadarajah B., Brunstrom J. E., Grutzendler J., Wong R. O. L., and Pearlman A. L. (2001) Two modes of migration in early development of the cerebral cortex. Nat. Neurosci. 4, 143–150.PubMedGoogle Scholar
  31. 31.
    Kriegstein A. R. and Noctor S. C. (2004) Patterns of neuronal migration in the embryonic cortex. Trends Neurosci. 27, 392–399.PubMedGoogle Scholar
  32. 32.
    Iacopetti P., Michelini M., Stuckmann I., Oback B., Aaku-Saraste E., and Huttner W. B. (1999) Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc. Natl. Acad. Sci. USA 96, 4639–4644.PubMedGoogle Scholar
  33. 33.
    Cai L., Hayes N. L., Takahashi T., Caviness V. S. Jr., and Nowakowski R. S. (2002) Size distribution of retrovirally marked lineages matches predictions from population measurements of cell cycle behavior. J. Neurosci. Res. 69, 731–744.PubMedGoogle Scholar
  34. 34.
    Hartfuss E., Galli R., Heins N., and Götz M. (2001) Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 15–30.PubMedGoogle Scholar
  35. 35.
    Chenn A. and Walsh C. A. (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369.PubMedGoogle Scholar
  36. 36.
    Tarabykin V., Stoykova A., Usman N., and Gruss P. (2001) Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128, 1983–1993.PubMedGoogle Scholar
  37. 37.
    Roy K., Kuznicki K., Wu Q., et al. (2004) The Tlx gene regulates the timing of neurogenesis in the cortex. J. Neurosci. 24, 8333–8345.PubMedGoogle Scholar
  38. 38.
    Nieto M., Monuki E. S., Tang H., et al. (2004) Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II–IV of the cerebral cortex. J. Comp. Neurol. 479, 168–180.PubMedGoogle Scholar
  39. 39.
    Zimmer C., Tiveron M.-C., Bodmer R., and Cremer H. (2004) Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb. Cortex 14, 1408–1420.PubMedGoogle Scholar
  40. 40.
    Britanova O., Akopov S., Lukyanov S., Gruss P., and Tarabykin V. (2005) Novel transcription factor Stab2 interacts with matrix attachment region DNA elements in a tissue-specific manner and demonstrates cell-type-dependent expression in the developing mouse CNS. Eur. J. Neurosci. 21, 658–668.PubMedGoogle Scholar
  41. 41.
    Campbell K. (2005) Cortical neuron specification: it has its time and place. Neuron 46, 373–376.PubMedGoogle Scholar
  42. 42.
    Stenman J., Yu R. T., Evans R. M., and Campbell K. (2003) Tlx and Pax6 co-operate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon. Development 130, 1113–1122.PubMedGoogle Scholar
  43. 43.
    Hevner R. F., Shi L., Justice N., et al. (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353–366.PubMedGoogle Scholar
  44. 44.
    Muzio L., DiBenedetto B., Stoykova A., Boncinelli, E., Gruss P., and Mallamaci A. (2002) Conversion of cerebral cortex into basal ganglia in Emx2 -/-Pax6Sey/Sey double-mutant mice. Nat. Neurosci. 5, 737–745.PubMedGoogle Scholar
  45. 45.
    Scardigli R., Bäumer N., Gruss P., Guillemot F., and Le Roux I. (2003) Direct and concentration-dependent regulation of the proneural gene Neurogenin 2 by Pax6. Development 130, 3269–3281.PubMedGoogle Scholar
  46. 46.
    Grove E. A. and Fukuchi-Shimogori T. (2003) Generating the cerebral cortical area map. Annu. Rev. Neurosci. 26, 355–380.PubMedGoogle Scholar
  47. 47.
    Zaki P. A., Quinn J. C., and Price D. J. (2003) Mouse models of telencephalic development. Curr. Opin. Genet. Devel. 13, 423–437.Google Scholar
  48. 48.
    Shimogori, T., Banuchi V., Ng H. Y., Strauss J. B., Grove E. A. (2004) Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex. Development 131, 5639–5647.PubMedGoogle Scholar
  49. 49.
    Bishop K. M., Goudreau G., and O'Leary D. D. M. (2000_ Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288, 344–349.PubMedGoogle Scholar
  50. 50.
    Hamasaki T., Leingärtner A., Ringstedt T., and O'Leary D. D. M. (2004) EMX2 regulates size and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors. Neuron 43, 359–372.PubMedGoogle Scholar
  51. 51.
    Ross S. F., Greenberg M. E., and Stiles C. D. (2003) Basic helix-loop-helix factors in cortical development. Neuron 39, 13–25.PubMedGoogle Scholar
  52. 52.
    Sun Y., Nadal-Vicens M., Misono S., et al. (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104, 365–376.PubMedGoogle Scholar
  53. 53.
    Heins N., Cremisi F., Malatesta P., et al. (2001) Emx2 promotes symmetric cell divisions and a multipoten tial fate in precursors from the cerebral cortex. Mol. Cell. Neurosci. 18, 485–502.PubMedGoogle Scholar
  54. 54.
    Heins N., Malatesla P., Cecconi F., et al. (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci. 5, 308–315.PubMedGoogle Scholar
  55. 55.
    Hirabayashi Y., Itoh Y., Tabata H., et al. (2004) The Wnt/β-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131, 2791–2801.PubMedGoogle Scholar
  56. 56.
    McConnell S. K. and Kaznowski C. E. (1991) Cell cycle dependence of laminar determination in developing neocortex. Science 254, 282–285.PubMedGoogle Scholar
  57. 57.
    McConnell S. K. (1995) Constructing the cerebral cortex: neurogenesis and fate determination. Neuron 15, 761–768.PubMedGoogle Scholar
  58. 58.
    Hasegawa H., Ashigaki S., Takamatsu M., et al. (2004) Laminar patterning in the developing neocortex by temporally coordinated fibroblast growth factor signaling. J. Neurosci. 24, 8711–8719.PubMedGoogle Scholar
  59. 59.
    Hanashima C., Li, S. C., Shen L., Lai E., and Fishell G. (2004) Foxg1 suppresses early cortical cell fate. Science 303, 56–59.PubMedGoogle Scholar
  60. 60.
    Englund C., Fink A., Lau C., et al. (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251.PubMedGoogle Scholar
  61. 61.
    Hevner R. F., Daza R. A. M., Rubenstein J. L. R., Stunnenberg H., Olavarria J. F., and Englund C. (2003) Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons. Dev. Neurosci. 25, 139–151.PubMedGoogle Scholar
  62. 62.
    Angevine J. B. and Sidman R. L. (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192, 766–768.PubMedGoogle Scholar
  63. 63.
    Rakic P. (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183, 425–427.PubMedGoogle Scholar
  64. 64.
    Takahashi T., Goto T., Miyama S., Nowakowski R. S., and Caviness V. S. Jr. (1999) Sequence of neuron origin and neocortical laminar fate: relation to cell cycle of origin in the developing murine cerebral wall. J. Neurosci. 19, 10,357–10,371.Google Scholar
  65. 65.
    Pearson B. J. and Doe C. Q. (2004) Specification of temporal identity in the developing nervous system. Annu. Rev. Cell Dev. Biol. 20, 619–647.PubMedGoogle Scholar
  66. 66.
    Zhong W. (2003) Diversifying neural, cells through order of birth and asymmetry of division. Neuron 37, 11–14.PubMedGoogle Scholar
  67. 67.
    Mizutani K. and Saito T. (2005) Progenitors resume generating neurons after temporary inhibition of neurogenesis by Notch activation in the mammalian cerebral cortex. Development 132, 1295–1304.PubMedGoogle Scholar
  68. 68.
    Muzio L. and Mallamaci A. (2005) Foxg1 cofines Cajal-Retzius neuronogenesis and hippocampal morphogenesis to the dorsomedial pallium. J. Neurosci. 25, 4435–4441.PubMedGoogle Scholar
  69. 69.
    Takiguchi Hayashi K., Sekiguchi M., et al. (2004) Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J. Neurosci. 24, 2286–2295.PubMedGoogle Scholar
  70. 70.
    Ferland R. J., Cherry T. J., Preware P. O., Morrisey E. E., and Walsh C. A. (2003) Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J. Comp. Neurol. 460, 266–279.PubMedGoogle Scholar
  71. 71.
    Arimatsu Y., Ishida M., Kaneko T., Ichinose S., and Omori A. (2003) Organization and development of corticocortical associative neurons expressing the orphan nuclear receptor Nurr1. J. Comp. Neurol. 466, 180–196.PubMedGoogle Scholar
  72. 72.
    Inoue K., Terashima T., Nishikawa T., and Takumi T. (2004) Fez1 is layer-specifically expressed in the adult mouse neocortex. Eur. J. Neurosci. 20, 2909–2916.PubMedGoogle Scholar
  73. 73.
    Arlotta P., Molyneaux B. J., Chen, J., Inoue J., Kominami R., Macklis J. D. (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221.PubMedGoogle Scholar
  74. 74.
    Götz M., Stoykova A., and Gruss P. (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21, 1031–1044.PubMedGoogle Scholar
  75. 75.
    Lee, J.-K., Cho J.-H., Hwang W.-S., Lee Y.-D., Reu D.-S., and Suh-Kim H. (2000) Expression of neuroD/BETA2 in mitotic and postmitotic neuronal cells during the development of the nervous system. Dev. Dyn. 217, 361–367.PubMedGoogle Scholar
  76. 76.
    Nieto M., Schuurmans C., Britz O., and Guillemot F. (2001) Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29, 401–413.PubMedGoogle Scholar
  77. 77.
    Yun K., Mantani A., Garel S., Rubenstein J., and Israel M. A. (2004) Id4 regulates neural progenitor proliferation and differentiation in vivo. Development 131, 5441–5448.PubMedGoogle Scholar
  78. 78.
    Desai A. R. and McConnel S. K. (2000) Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127, 2863–2872.PubMedGoogle Scholar
  79. 79.
    Gaiano N. and Fishell G. (2002) The role of notch in promoting glial and neural stem cell fates. Annu. Rev. Neurosci. 25, 471–490.PubMedGoogle Scholar
  80. 80.
    Bohner A. P., Akers R. M., and McConnell S. K. (1997) Induction of deep layer cortical neurons in vitro. Development 124, 915–923.PubMedGoogle Scholar
  81. 81.
    Peterson P. H., Zhou K., Krauss S., and Zhong W. (2004) Continuing role for mouse Numb and Numbl in maintaining progenitor cells during cortical neurogenesis. Nat. Neurosci. 7, 803–811.Google Scholar
  82. 82.
    Kosodo Y., Röper K., Haubensak W., Marzesco A.-M., Corbeil D., and Huttner W. B. (2004) Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuropithelial cells. EMBO J. 23, 2314–2324.PubMedGoogle Scholar
  83. 83.
    Sun Y., Goderie S. K., and Temple S. (2005) Asymmetric distribution of EGFR receptor during mitosis generates diverse CNS progenitor cells. Neuron 45, 873–886.PubMedGoogle Scholar
  84. 84.
    Schuurmans C., Armant O., Nieto M., et al. (2004) Sequential phases of cortical specification involve Neurogenin-dependent and-independent pathways. EMBO J. 23, 2892–2902.PubMedGoogle Scholar
  85. 85.
    Toresson H., Potter S. S., and Campbell K. (2000) Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127, 4361–4371.PubMedGoogle Scholar
  86. 86.
    Yun K., Potter S., and Rubenstein J. L. R. (2001) Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128, 193–205.PubMedGoogle Scholar
  87. 87.
    Estivill-Torrus G., Pearson H., van Heyningen V., Price D. J., Rashbass P. (2002) Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors. Development 129, 455–466.PubMedGoogle Scholar
  88. 88.
    Haubst N., Berger J., Radjendirane V., et al. (2004) Molecular dissection of Pax6 function: the specific roles of the paired domain and homeodomain in brain development. Development 131, 6131–6140.PubMedGoogle Scholar
  89. 89.
    Ohtsuka T., Sakamoto M., Guillemot F., and Kageyama R. (2001) Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developping brain. J. Biol. Chem. 276, 30,467–30,474.Google Scholar
  90. 90.
    Makamura Y., Sakakibara S., Miyata T., et al. (2000) The bHLH gene Hes1 as a repressor of the neuronal commitment of CNS stem cells. J. Neurosci. 20, 283–293.Google Scholar
  91. 91.
    Hatakeyama J., Bessho Y., Katoh K., et al. (2004) Hes genes regulate size, shape and histogenesis of the nervous system by control of to genesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131, 5539–5550.PubMedGoogle Scholar
  92. 92.
    Lyden D., Young A. Z., Zagzag D., et al. (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401, 670–677.PubMedGoogle Scholar
  93. 93.
    Bishop K. M., Garel S., Nakagawa Y., Rubenstein J. L. R., and O'Leary D. D. M. (2003) Emx1 and Emx2 cooperate to regulate cortical size, lamination, neuronal differentiation, development of cortical efferents, and thalamocortical pathfinding. J. Comp. Neurol. 457, 345–360.PubMedGoogle Scholar
  94. 94.
    Hodge R. D., D'Ercole A. J., and O'Kusky J. R. (2004) Insulin-like growth factor-I accelerates the cell cycle by decreasing G1 phase length and increases cell cycle reentry in the embryonic cerebral cortex. J. Neurosci. 24, 10,201–10,210.Google Scholar
  95. 95.
    Hodge R. D., D'Ercole A. J., and O'Kusky J. R. (2005) Increased expression of insulin-like growth factor-I (IGF-1) during embryonic development produces neocortical overgrowth with differentially greater effects on specific cytoarchitectonic areas and cortical layers. Brain Res. Dev. Brain Res. 154, 227–237.PubMedGoogle Scholar
  96. 96.
    Ross M. E. and Walsh C. A. (2001) Human brain malformations and their lessons for neuronal migration. Annu. Rev. Neurosci. 24, 1041–1070.PubMedGoogle Scholar
  97. 97.
    Ellison-Wright Z., Heyman I., Frampton I., et al. (2004) Heterozygous PAX6 mutation, adult brain structure and fronto-striato-thalamic function in a human family. Eur. J. Neurosci. 19, 1505–1512.PubMedGoogle Scholar
  98. 98.
    Chan C.-H., Godinho L. N., Thomaidou D., Tan S.-S., Gulinsano M., and Parnavelas J. G. (2001) Einx1 is a marker for pyramidal neurons of the cerebral cortex. Cereb. Cortx 11, 1191–1198.Google Scholar
  99. 99.
    Mallamaci A., Iannone R., Briata P., et al. (1998) EMX2 protein in the developing mouse brain and olfactory area. Mech. Dev. 77, 165–172.PubMedGoogle Scholar
  100. 100.
    Cecchi C. and Boncinelli E. (2000) Emx homeogenes and mouse brain development. Trends Neurosci. 23, 347–352.PubMedGoogle Scholar
  101. 101.
    Allen T. and Lobe C. G. (1999) A comparison of Notch, Hes and Grg expression during murine embryonic and post-natal development. Cell. Mol. Biol. 45, 687–708.PubMedGoogle Scholar
  102. 102.
    Kawaguchi A., Ogawa M., Saito K., Matsuzaki F., Okano H., and Miyata T. (2004) Differential expression of Pax6 and Ngn2 between pairgenerated cortical neurons. J. Neurosci. Res. 78, 784–795.PubMedGoogle Scholar
  103. 103.
    Fode C., Ma Q., Casarosa S., Ang S.-L., Anderson D. J., and Guillemot F. (2000) A role for neural determination genes in specifying the dorsoventral indentity of telencephalic neurons. Genes Devel. 14, 67–80.PubMedGoogle Scholar
  104. 104.
    Jen Y., Manova K., and Benezra R. (1997) Each member of the Id gene family exhibits a unique expression pattern in mouse gastrulation and neurogenesis. Dev. Dyn. 208, 92–106.PubMedGoogle Scholar
  105. 105.
    Schwab M. H., Druffel-Augustin S., Gass P., et al. (1998) Neuronal basic helix-loop-helix proteins (NEX, neuroD, NDRF): spatiotemporal expression and targeted disruption of the NEX gene in transgenic mice. J. Neurosci. 18, 1408–1418.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  1. 1.Department of Pathology (Neuropathology)University of Washington School of MedicineSeattle

Personalised recommendations