Molecular Neurobiology

, Volume 32, Issue 3, pp 223–235 | Cite as

Do stress and long-term potentiation share the same molecular mechanisms?

  • Chiung-Chun Huang
  • Chih-Hao Yang
  • Kuei-Sen Hsu


Stress is a biological, significant factor shown to influence hippocampal synaptic plasticity and cognitive functions. Although numerous studies have reported that stress produces a suppression in long-term potentiation (LTP; a putative synaptic mechanism underlying learning and memory), little is known about the mechanism by which this occurs. Because the effects of stress on LTP and its converse process, long-term depression (LTD), parallel the changes in synapticity that occur following the establishment of LTP with tetanic stimulation (i.e., occluding LTP and enhancing LTD induction), it has been proposed that stress affects subsequent hippocampal plasticity by sharing the same molecular machinery required to support LTP. This article summarizes recent findings from ours and other laboratories to assess this view and discusses relevant hypotheses in the study of stress-related modifications of synaptic plasticity.

Index Entries

Stress long-term potentiation (LTP) N-methyl-d-aspartate (NMDA) receptors extracellular signal-related kinase (ERK) mitogen-activated protein kinase (MAPK) glucocorticoid receptor hippocampus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McEwen B. S. and Sapolsky R. M. (1995) Stress and cognitive function. Curr. Opin. Neurobiol. 5, 205–216.PubMedCrossRefGoogle Scholar
  2. 2.
    Kim J. J. and Yoon K. S. (1998) Stress: metaplastic effects in the hippocampus. Trends Neurosci. 21, 505–509.PubMedCrossRefGoogle Scholar
  3. 3.
    Kim J. J. and Diamond D. M. (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci. 3, 453–462.PubMedCrossRefGoogle Scholar
  4. 4.
    Morris R. G., Garrud P., Rawlins J. N., and O’Keefe J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683.PubMedCrossRefGoogle Scholar
  5. 5.
    Phillips R. G. and LeDoux J. E. (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106, 274–285.PubMedCrossRefGoogle Scholar
  6. 6.
    Squire L. R. and Zola S. M. (1996) Structure and function of declarative and nondeclarative memory systems. Proc. Natl. Acad. Sci. USA 93, 13,515–13,522.CrossRefGoogle Scholar
  7. 7.
    Foy M. R., Stanton M. E., Levine S., and Thompson R. F. (1987) Behavioral stress impairs long-term potentiation in rodent hippocampus. Behav. Neural Biol. 48, 138–149.PubMedCrossRefGoogle Scholar
  8. 8.
    Shors T. J., Seib T. B., Levine S., and Thompson R. F. (1989) Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. Science 244, 224–226.PubMedCrossRefGoogle Scholar
  9. 9.
    Shors T. J. and Dryver E. (1994) Effect of stress and long-term potentiation (LTP) on subsequent LTP and the theta burst response in the dentate gyrus. Brain Res. 666, 232–238.PubMedCrossRefGoogle Scholar
  10. 10.
    Shors T. J., Gallegos R. A., and Breindl A. (1997) Transient and persistent consequences of acute stress on long-term potentiation (LTP), synaptic efficacy, theta rhythms and bursts in area CA1 of the hippocampus. Synapse 26, 209–217.PubMedCrossRefGoogle Scholar
  11. 11.
    Diamond D. M., Fleshner M., and Rose G. M. (1994) Psychological stress repeatedly blocks hippocampal primed burst potentiation in behaving rats. Behav. Brain Res. 62, 1–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim J. J., Foy M. R., and Thompson R. F. (1996) Behavioral stress modifies hippocampal plasticity through N-methyl-D-aspartate receptor activation. Proc. Natl. Acad. Sci. USA 93, 4750–4753.PubMedCrossRefGoogle Scholar
  13. 13.
    Xu L., Anwyl R., and Rowan M. J. (1997) Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 387, 497–500.PubMedCrossRefGoogle Scholar
  14. 14.
    Yang C. H., Huang C. C., and Hsu K. S. (2004) Behavioral stress modifies hippocampal synaptic plasticity through corticosterone-induced sustained extracellular signal-regulated kinase/mitogen-activated protein kinase activation. J. Neurosci. 24, 11,029–11,034.Google Scholar
  15. 15.
    Yang C. H., Huang C. C., and Hsu K. S. (2005) Behavioral stress enhances hippocampal CA1 long-term depression through the blockade of the glutamate uptake. J. Neurosci., 27, 4288–4293.CrossRefGoogle Scholar
  16. 16.
    Diamond D. M., Park C. R., and Woodson J. C. (2004) Stress generates emotional memories and retrograde amnesia by inducing an endogenous form of hippocampal LTP. Hippocampus 14, 281–291.PubMedCrossRefGoogle Scholar
  17. 17.
    Garcia R., Musleh W., Tocco G., Thompson R. F., and Baudry M. (1997) Time-dependent blockade of STP and LTP in hippocampal slices following acute stress in mice. Neurosci. Lett. 233, 41–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Pavlides C., Nivon L. G., and McEwen B. S. (2002) Effects of chronic stress on hippocampal long-term potentiation. Hippocampus 12, 245–257.PubMedCrossRefGoogle Scholar
  19. 19.
    Diamond D. M., Bennett M. C., Stevens K. E., Wilson E. L., and Rose G. M. (1990) Exposure to a novel environment interferes with the induction of hippocampal primed burst potentiation in the behaving rat. Psychobiology 18, 273–281.Google Scholar
  20. 20.
    Mesches M. H., Fleshner M., Heman K. L., Rose G. M., and Diamond D. M. (1999) Exposing rats to a predator blocks primed burst potentiation in the hippocampus in vitro. J. Neurosci. 19, RC18.Google Scholar
  21. 21.
    Xu L., Holscher C., Anwyl R., and Rowan M. J. (1998) Glucocorticoid receptor and protein/RNA synthesis-dependent mechanisms underlie the control of synaptic plasticity by stress. Proc. Natl. Acad. Sci. USA 95, 3204–3208.PubMedCrossRefGoogle Scholar
  22. 22.
    Pavlides C., Watanabe Y., Magarinos A.M., and McEwen B.S. (1995) Opposing roles of type I and type II adrenal steroid receptors in hippocampal long-term potentiation. Neuroscience 68, 387–394.PubMedCrossRefGoogle Scholar
  23. 23.
    Yamada K., McEwen B. S., and Pavlides C. (2003) Site and time dependent effects of acute stress on hippocampal long-term potentiation in freely behaving rats. Exp. Brain Res. 152, 52–59.PubMedCrossRefGoogle Scholar
  24. 24.
    Huang Y. Y., Colino A., Selig D. K., and Malenka R. C. (1992) The influence of prior synaptic activity on the induction of long-term potentiation. Science 255, 730–733.PubMedCrossRefGoogle Scholar
  25. 25.
    Kim J. J., Lee H. J., Han J. S., and Packard M. G. (2001) Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. J. Neurosci. 21, 5222–5228.PubMedGoogle Scholar
  26. 26.
    Kim J. J., Koo J. W., Lee H. J., and Han J. S. (2005) Amygdalar inactivation blocks stress-induced impairments in hippocampal long-term potentiation and spatial memory. J. Neurosci. 25, 1532–1539.PubMedCrossRefGoogle Scholar
  27. 27.
    Diamond D. M., Bennett M. C., Stevens K. E., Wilson R. L., and Rose G. M. (1990) Exposure to a novel environment interferes with the induction of hippocampal primed burst potentiation in the behaving rat. Psychobiology 18, 273–281.Google Scholar
  28. 28.
    Shors T. J. and Thompson R. F. (1992) Acute stress impairs (or induces) synaptic long-term potentiation (LTP) but does not affect paired-pulse facilitation in the stratum radiatum of rat hippocampus. Synapse 11, 262–265.PubMedCrossRefGoogle Scholar
  29. 29.
    Sacchetti B., Lorenzini C. A., Baldi E., et al. (2001) Long-lasting hippocampal potentiation and contextual memory consolidation. Eur. J. Neurosci. 13, 2291–2298.PubMedCrossRefGoogle Scholar
  30. 30.
    Huang C. C. and Hsu K. S. (2001) Progress in understanding the factors regulating reversibility of long-term potentiation. Rev. Neurosci. 12, 51–68.PubMedGoogle Scholar
  31. 31.
    Zhou Q. and Poo M. M. (2004) Reversal and consolidation of activity-induced synaptic modifications. Trends Neurosci. 27, 378–383.PubMedCrossRefGoogle Scholar
  32. 32.
    Chang L. and Karin M. (2001) Mammalian MAP kinase signalling cascades. Nature 410, 37–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Berman D. E., Hazvi S., Rosenblum K., Seger R., and Dudai Y. (1998) Specific and differential activation of mitogen-activated protein kinase cascades by unfamiliar taste in the insular cortex of the behaving rat. J. Neurosci. 18, 10,037–10,044.Google Scholar
  34. 34.
    Atkins C. M., Selcher J. C., Petraitis J. J., Trzaskos J. M., and Sweatt J. D. (1998) The MAPK cascade is required for mammalian associative learning. Nat. Neurosci. 1, 602–609.PubMedCrossRefGoogle Scholar
  35. 35.
    Schafe G. E., Nadel N. V., Sullivan G. M., Harris A., and LeDoux J. E. (1999) Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learn. Mem. 6, 97–110.PubMedGoogle Scholar
  36. 36.
    Blum S., Moore A. N., Adams F., and Dash P. K. (1999) A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J. Neurosci. 19, 3535–3544.PubMedGoogle Scholar
  37. 37.
    Selcher J. C., Atkins C. M., Trzaskos J. M., Paylor R., and Sweatt J. D. (1999) A necessity for MAP kinase activation in mammalian spatial learning. Learn. Mem. 6, 478–490.PubMedCrossRefGoogle Scholar
  38. 38.
    English J. D. and Sweatt J. D. (1996) Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem. 271, 24,329–24,332.Google Scholar
  39. 39.
    Akirav I., Sandi C., and Richter-Levin G. (2001) Differential activation of hippocampus and amygdala following spatial learning under stress. Eur. J. Neurosci. 14, 719–725.PubMedCrossRefGoogle Scholar
  40. 40.
    Davis S., Vanhoutte P., Pages C., Caboche J., and Laroche S. (2000) The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563–4572.PubMedGoogle Scholar
  41. 41.
    Trentani A., Kuipers S. D., Ter Horst G. J., and Den Boer J. A. (2002) Selective chronic stress-induced in vivo ERK1/2 hyperphosphorylation in medial prefrontocortical dendrites: implications for stress-related cortical pathology? Eur. J. Neurosci. 15, 1681–1691.PubMedCrossRefGoogle Scholar
  42. 42.
    Adams J. P., Roberson E. D., English J. D., Selcher J. C., and Sweatt J. D. (2000) MAPK regulation of gene expression in the central nervous system. Acta Neurobiol. Exp. 60, 377–394.Google Scholar
  43. 43.
    Morozov A., Muzzio I. A., Bourtchouladze R., et al. (2003) Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron 39, 309–325.PubMedCrossRefGoogle Scholar
  44. 44.
    Impey S., Mark M., Villacres E. C., Poser S., Chavkin C., and Storm D. R. (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16, 973–982.PubMedCrossRefGoogle Scholar
  45. 45.
    Barrionuevo G., Schottler F., and Lynch G. (1980) The effects of repetitive low frequency stimulation on control and “potentiated” synaptic responses in the hippocampus. Life Sci. 27, 2385–2391.PubMedCrossRefGoogle Scholar
  46. 46.
    Fujii S., Saito K., Miyakawa H., Ito K., and Kato H. (1991) Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hippocampal slices. Brain Res. 555, 112–122.PubMedCrossRefGoogle Scholar
  47. 47.
    Massey P. V., Johnson B. E., Moult P. R., et al. (2004) Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J. Neurosci. 24, 7821–7828.PubMedCrossRefGoogle Scholar
  48. 48.
    Abraham W. C. and Bear M. F. (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130.PubMedCrossRefGoogle Scholar
  49. 49.
    Abraham W. C. and Tate W. P. (1997) Metaplasticity: a new vista across the field of synaptic plasticity. Prog. Neurobiol. 52, 303–323.PubMedCrossRefGoogle Scholar
  50. 50.
    Abraham W. C. (1999) Metaplasticity: Key Element in Memory and Learning? News Physiol. Sci. 14, 85.Google Scholar
  51. 51.
    Bienenstock E. L., Cooper L. N., and Munro P. W. (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48.PubMedGoogle Scholar
  52. 52.
    Bear M. F. (1995) Mechanism for a sliding synaptic modification threshold. Neuron 15, 1–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Coussens C. M., Kerr D. S., and Abraham W. C. (1997) Glucocorticoid receptor activation lowers the threshold for NMDA-receptor-dependent homosynaptic long-term depression in the hippocampus through activation of voltage-dependent calcium channels. J. Neurophysiol. 78, 1–9.PubMedGoogle Scholar
  54. 54.
    McGaugh J. L., Cahill L., and Roozendaal B. (1996) Involvement of the amygdala in memory storage: interaction with other brain systems. Proc. Natl. Acad. Sci. USA 93, 13508–13514.PubMedCrossRefGoogle Scholar
  55. 55.
    Kerr D. S., Campbell L. W., Hao S. Y., and Landfield P. W. (1989) Corticosteroid modulation of hippocampal potentials: increased effect with aging. Science 245, 1505–1509.PubMedCrossRefGoogle Scholar
  56. 56.
    Bear M. F. and Malenka R. C. (1994) Synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol. 4, 389–399.PubMedCrossRefGoogle Scholar
  57. 57.
    Lupien S. J. and McEwen B. S. (1997) The acute effects of corticosteroids on cognition: integration of animal and human model studies. Brain Res. Brain Res. Rev. 24, 1–27.PubMedCrossRefGoogle Scholar
  58. 58.
    Weiss C., Sametsky E., Sasse A., Spiess J., and Disterhoft J. F. (2005) Acute stress facilitates trace eyeblink conditioning in C57BL/6 male mice and increases the excitability of their CA1 pyramidal neurons. Learn. Mem. 12, 138–143.PubMedCrossRefGoogle Scholar
  59. 59.
    Lawrence M. S. and Sapolsky R. M. (1994) Glucocorticoids accelerate ATP loss following metabolic insults in cultured hippocampal neurons. Brain Res. 646, 303–306.PubMedCrossRefGoogle Scholar
  60. 60.
    Sapolsky R. M. (1996) Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress 1, 1–19.Google Scholar
  61. 61.
    Abraham W. C. (2004) Stress-related phenomena. Hippocampus 14, 675, 676.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc 2005

Authors and Affiliations

  • Chiung-Chun Huang
    • 1
  • Chih-Hao Yang
    • 1
    • 2
  • Kuei-Sen Hsu
    • 1
    • 2
  1. 1.Department of PharmacologyNational Cheng Kung UniversityTainan CityTaiwan
  2. 2.Institute of Basic Medical Science, College of MedicineNational Cheng Kung UniversityTainan CityTaiwan

Personalised recommendations