Molecular Neurobiology

, Volume 32, Issue 1, pp 5–13 | Cite as

Building a cathedral

Neuroscience and the legacy of leon wolfe
  • Matthew W. Spence


This article describes the scientific legacy of Dr. Leon Wolfe, with illustrations from his contributions to insect physiology, glycolipid, and eicosanoid biochemistry as well as to our understanding of neuronal ceroid lipofuscinoses and lysosomal storage diseases. In addition to the written record, Wolfe inspired all who knew him with his boundless imagination and enthusiasm for science and his ability to see the promise and potential of every experiment.

Index Entries

Insect physiology gangliosides eicosanoids neuronal ceroid lipofuscinoses lysosomal storage diseases scientific legacy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bush-Brown L. (1989). Quotation. Respectfully quoted: a dictionary of quotations. Accessed July 12, 2004.Google Scholar
  2. 2.
    Wolfe L. S. (1954). The deposition of the third instar larval cuticle of Calliphora erythrocephala. Q. J. Microsc. Sci. 95, 49–66.Google Scholar
  3. 3.
    Wolfe L. S. (1954). Studies of the development of the imaginal cuticle of Calliphora erythrocephala. Q. J. Microsc. Sci. 95, 67–78.Google Scholar
  4. 4.
    Wolfe L. S. and Smallman B. N. (1956). The properties of cholinesterase from insects. J. Cell Comp. Physiol. 48, 215–236.CrossRefGoogle Scholar
  5. 5.
    (2004). Drosophila gene families: proneural and neurogenic genes. Accessed July 12, 2004.Google Scholar
  6. 6.
    Hakomori S. (2003). Structure, organization, and function of glycosphingolipids in membrane. Curr. Opin. Hematol. 10, 16–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Wolfe L. S. and Lowden J. A. (1964). Studies on brain gangliosides. I. The isolation and composition of a trisialoganglioside. Can. J. Biochem. Physiol. 42, 1041–1056.PubMedGoogle Scholar
  8. 8.
    Lowden J. A. and Wolfe L. S. (1964). Studies on brain gangliosides. 3. Evidence for the location of gangliosides specifically in neurones. Can. J. Biochem. Physiol. 42, 1587–1594.PubMedGoogle Scholar
  9. 9.
    Spence M. W. and Wolfe L. S. (1967). Gangliosides in developing rat brain. Isolation and composition of subcellular membranes enriched in gangliosides. Can. J. Biochem. 45, 671–688.PubMedCrossRefGoogle Scholar
  10. 10.
    Wolfe L. S., Callahan J., Fawcett J. S., Andermann F., and Scriver C. R. (1970). GM1-gangliosidosis without chondrodystrophy or visceromegaly. β-galactosidase deficiency with gangliosidosis and the excessive excretion of a keratan sulfate. Neurology 20, 23–44.PubMedCrossRefGoogle Scholar
  11. 11.
    Simons K. and Toomre D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.PubMedCrossRefGoogle Scholar
  12. 12.
    Harder T. (2003). Formation of functional cell membrane domains: the interplay of lipid- and protein-mediated interactions. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358, 863–868.PubMedCrossRefGoogle Scholar
  13. 13.
    Proia R. L. (2003). Glycosphingolipid functions: insights from engineered mouse models. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358, 879–883.PubMedCrossRefGoogle Scholar
  14. 14.
    Hannun Y. A., Luberto C., and Argraves K. M. (2001). Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 40, 4893–4903.PubMedCrossRefGoogle Scholar
  15. 15.
    Wolfe L. S. and Coceani F. (1979). The role of prostaglandins in the central nervous system. Annu. Rev. Physiol. 41, 669–684.PubMedCrossRefGoogle Scholar
  16. 16.
    Coceani F., Pace-Asciak C., Volta F., and Wolfe L. S. (1967). Effect of nerve stimulation on prostaglandin formation and release from the rat stomach. Am. J. Physiol. 213, 1056–1064.PubMedGoogle Scholar
  17. 17.
    Wolfe L. S. (1999). Synaptic transmission: role of polyunsaturated fatty acids, prostaglandins, and other eicosanoids. In: Encyclopedia of Neuroscience, Adelman G. and Smith B. H., eds., pp. 1994–1997. Amsterdam: Elsevier.Google Scholar
  18. 18.
    Soberman R. J. and Christmas P. (2003). The organization and consequences of eicosanoid signaling. J. Clin. Invest. 111, 1107–1113.PubMedCrossRefGoogle Scholar
  19. 19.
    Funk C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875.PubMedCrossRefGoogle Scholar
  20. 20.
    Liechti R. and Farmer E. E. (2003). The jasmonate biochemical pathway. Sci. STKE. 2003, CM18.Google Scholar
  21. 21.
    Castellano C., Rossi-Arnaud C., Cestari V., and Costanzi M. (2003). Cannabinoids and memory: animal studies. Curr. Drug Targets CNS Neurol. Disord. 2, 389–402.PubMedCrossRefGoogle Scholar
  22. 22.
    Maccarrone M., Bari M., Battista N., and Finazzi-Agro A. (2002). Endocannabinoid degradation, endotoxic shock and inflammation. Curr. Drug Targets Inflamm. Allergy 1, 53–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Roman R. J. (2002). P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82, 131–185.PubMedGoogle Scholar
  24. 24.
    Clarke J. T., Wolfe L. S., and Perlin A. S. (1971). Evidence for a terminal -d-galactopyranosyl residue in galactosylgalactosylglucosylceramide from human kidney. J. Biol. Chem. 246, 5563–5569.PubMedGoogle Scholar
  25. 25.
    Wolfe L. S. and Ng Ying Kin N. M. (1982). Batten disease: new research findings on the biochemical defect. Birth Defects Orig. Artic. Ser. 18, 233–239.PubMedGoogle Scholar
  26. 26.
    Mitchison H. M. and Mole S. E. (2001). Neurodegenerative disease: the neuronal ceroid lipofuscinoses (Batten disease). Curr. Opin. Neurol. 14, 795–803.PubMedCrossRefGoogle Scholar
  27. 27.
    Cooper J. D. (2003). Progress towards understanding the neurobiology of Batten disease or neuronal ceroid lipofuscinosis. Curr. Opin. Neurol. 16, 121–128.PubMedCrossRefGoogle Scholar
  28. 28.
    Wisniewski K. E., Zhong N., and Philippart M. (2001). Pheno/genotypic correlations of neuronal ceroid lipofuscinoses. Neurology 57, 576–581.PubMedGoogle Scholar
  29. 29.
    Palo J., Elovaara I., Haltia M., Kin N. Y., and Wolfe L. S. (1982). Infantile neuronal ceroid lipofuscinosis: isolation of storage material. Neurology 32, 1035–1038.PubMedGoogle Scholar
  30. 30.
    Ng Ying Kin N. M., Palo J., Haltia M., and Wolfe L. S. (1983). High levels of brain dolichols in neuronal ceroid-lipofuscinosis and senescence. J. Neurochem. 40, 1465–1473.PubMedGoogle Scholar
  31. 31.
    Wolfe L. S., Palo J., Santavuori P., et al. (1986). Urinary sediment dolichols in the diagnosis of neuronal ceroid-lipofuscinosis. Ann. Neurol. 19, 270–274.PubMedCrossRefGoogle Scholar
  32. 32.
    Wolfe L. S., Ng Ying Kin N. M., Palo J., Bergeron C., Kotila M., and Varonen S. (1985). Dolichols are elevated in brain tissue from Alzheimer’s disease, but not in urinary sediment from Alzheimer’s disease and Down’s syndrome. Neurochem. Pathol. 3, 213–221.PubMedGoogle Scholar
  33. 33.
    Wolfe L. S., Ng Ying Kin N. M., Palo J., and Haltia M. (1983). Dolichols in brain and urinary sediment in neuronal ceroid lipofuscinosis. Neurology 33, 103–106.PubMedGoogle Scholar
  34. 34.
    Kin N. M. and Wolfe L. S. (1982). Presence of abnormal amounts of dolichols in the urinary sediment of Batten disease patients. Pediatr. Res. 16, 530–532.PubMedGoogle Scholar
  35. 35.
    Faust, J. (2004). Neuronal ceroid lipofuscinoses. Scholar
  36. 36.
    Nilsson E. and Yin D. (1997). Preparation of artificial ceroid/lipofuscin by UV-oxidation of subcellular organelles. Mech. Ageing Dev. 99, 61–78.PubMedCrossRefGoogle Scholar
  37. 37.
    Yin D. (1996). Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Radic. Biol. Med. 21, 871–888.PubMedCrossRefGoogle Scholar
  38. 38.
    Emerson, R. W. (2004). Emerson Collection. Accessed July 12, 2004.Google Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Matthew W. Spence

There are no affiliations available

Personalised recommendations