Molecular Neurobiology

, Volume 31, Issue 1–3, pp 273–282 | Cite as

Environmental toxins and α-synuclein in Parkinson’s disease

Article

Abstract

In recent years, environmental influences have been thought to play an important role in Parkinson’s disease (PD). Evidence from epidemiological investigations suggests that environmental factors might take part in the disease process. Intriguingly, most of environmental toxins share the common mechanism of causing mitochondria dysfunction by inhibiting complex I and promoting α-synuclein aggregation, a key factor in PD. Therefore, understanding the mechanism of interactions between α-synuclein and environmental factors could lead to new therapeutic approaches to PD.

Index Entries

Environmental toxins α-synuclein Parkinson’s disease mitochondria oxidative stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goedert M. (2001) Alpha-synuclein and neurodegenerative diseases. Neuroscience 2, 492–501.PubMedGoogle Scholar
  2. 2.
    Dawson T.M. and Dawson V.L. (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302, 819–822.PubMedCrossRefGoogle Scholar
  3. 3.
    Collier K.S., Maries E., and Kordower J.H. (2002) Etiology of Parkinson’s disease: genetics and environment revisited. PNAS 99, 13,972–13,974.CrossRefGoogle Scholar
  4. 4.
    Warner T.T. and Schapira A.H.V. (2003) Genetic and environmental factors in the cause of Parkinson’s disease. Ann. Neurol. 53 (Suppl. 3), s16-s25.PubMedCrossRefGoogle Scholar
  5. 5.
    Manning Bog A.B., McCormack A.L., Li J., Uversky B.N., Fink A.L., and Di Monte D.A. (2002) The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice. J. Biol. Chem. 277, 1641–1644.PubMedCrossRefGoogle Scholar
  6. 6.
    Isacson O. (2002) Models of repair mechanisms for future treatment modalities of Parkinson’s disease. Brain Res. Bull. 57, 839–846.PubMedCrossRefGoogle Scholar
  7. 7.
    Dauer W., Kholodilov N., Vila M., et al. (2002) Resistance of α-synuclein null mice to the Parkinsonian neurotoxin MPTP. Proc. Natl. Acad. Sci. USA 99, 14,524–14,529.CrossRefGoogle Scholar
  8. 8.
    Wang H. M., Shimoji M., Yu S. W., Dawson T. M., and Dawson V. (2003) Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson’s disease. Ann. NY Acad. Sci. 991, 132–139.PubMedCrossRefGoogle Scholar
  9. 9.
    Beal M.F. (2003) Mitochondria, Oxidative Damage, and Inflammation in Parkinson’s disease. Ann. NY Acad. Sci. 991, 120–131.PubMedCrossRefGoogle Scholar
  10. 10.
    Collier T.J., Collier K.S., McGuire S., and Sortwell C.E. (2003) Cellular models to study dopaminergic injury responses. Ann. NY Acad. Sci. 991, 140–151.PubMedCrossRefGoogle Scholar
  11. 11.
    Sherer T. B., Kim J. H., Betarbet R., and Greennmyre J.T. (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp. Neurol. 179, 9–16.PubMedCrossRefGoogle Scholar
  12. 12.
    Brunk U.T. and Terman A. (2002) The mitochon-drial-lysosomal axis theory of aging accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 269, 1996–2002.PubMedCrossRefGoogle Scholar
  13. 13.
    Orth M., Tabrizi S.J., Schapira A.H.V., and Cooper J.M. (2003) α-Synuclein expression in HEK293 cells enhances the mitochondrial sensitive to rotenone. Neurosci. Lett. 351, 29–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Betarbet R., Sherer T.B., Di Monte D.A., and Greenamyre J.T. (2002) Mechanistic approaches to Parkinson’s disease pathogenesis. Brain Pathol. 12, 499–510.PubMedCrossRefGoogle Scholar
  15. 15.
    Kathleen A., Grire-Zeiss M.A., and Federoff H.J. (2003) Convergent pathobiologic model of Parkinson’s disease. Ann. NY Acad. Sci. 991, 152–166.Google Scholar
  16. 16.
    Gómez-Santos C., Ferrer I., Reiriz J., Vinals F., Barrachina M., and Ambrosio S. (2002) MPP+ increases α-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells. Brain Res. 935, 32–39.PubMedCrossRefGoogle Scholar
  17. 17.
    Mc Naught K.S.P. and Olanow C. (2003) Proteolytic stress: a unifying concept for the etiopathogenesis of Parkinson’s disease. Ann. Neurol. 53,(Suppl. 3), s73-s86.CrossRefGoogle Scholar
  18. 18.
    Cookson M.R. (2003) Pathways to parkinsonism. Neuron 37, 7–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Seo J.H., Rah J.C., Choi S.H., et al. (2002) α-Synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J. 16, 1826–1829.PubMedGoogle Scholar
  20. 20.
    George J.M. (2001) The synucleins. Genome Biol. 3, 3002.1–3002.6.CrossRefGoogle Scholar
  21. 21.
    Ma Q.L., Chan P., Yoshii M., and Uéda K. (2003) α-Synuclein aggregation and neurodegenerative disease. J. Alzheimer’s Dis. 5, 139–148.Google Scholar
  22. 22.
    Yu X., Tsunao S., Uéda K., et al. (2001) Characterization of the human α-synuclein gene: genomic structure, transcription start site, promoter region and polymorphisms. J. Alzheimer’s Dis. 3, 485–494.Google Scholar
  23. 23.
    Lücking C.B. and Brice A. (2000) Alpha-synuclein and Parkinson’s disease. Cell. Mol. Life Sci. 57, 1894–1908.PubMedCrossRefGoogle Scholar
  24. 24.
    Paxinou E., Chen Q., Giasson Bi W.M., et al. (2001) Induction of alpha-synuclein aggregation by intracellular nitrative insult. J. Neurosci. 21, 8053–8061.PubMedGoogle Scholar
  25. 25.
    Iseki E., Marui W., Sawada H., Uéda K., and Kosaka K. (2000) Accumulation of human α-synuclein in different cytoskeletons in Lewy bodies in brain of dementia with lewy bodies. Neurosci. Lett. 290, 41–44.PubMedCrossRefGoogle Scholar
  26. 26.
    Saha A.R., Hill J., Utton M.A., et al. (2004) Parkinson’s disease (alpha-synuclein) mutations exhibit defective axonal transport in cultured neurons. J. Cell Sci. 117, 1017–1024.PubMedCrossRefGoogle Scholar
  27. 27.
    Bianco C.L., Ridet J.L., Schneider B.L., Déglon N., and Aebischer P. (2002) α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. PNAS 99, 10,813–10,818.CrossRefGoogle Scholar
  28. 28.
    Abeliovich A., Schmitz Y., Farinas I., et al. (2000) Mice Lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252.PubMedCrossRefGoogle Scholar
  29. 29.
    Goerts J., Manning-Bog A.B., Cormack A.L.M., et al. (2003) Nuclear localization of α-synuclein and its interaction with histones. Biochemistry 42, 8465–8471.CrossRefGoogle Scholar
  30. 30.
    Alim M.A., Hossain M.S., Arima K., et al. (2002) Tubulin seeds α-synuclein fibril formation. J. Biol. Chem. 277, 2112–2117.PubMedCrossRefGoogle Scholar
  31. 31.
    Neystat M., Rzhetskaya M., Holodilov N., and Burke R.E. (2002) Analysis of synphilin-1 and synuclein interactions by yeast two-hybrid β-galactosidase liquid assay. Neurosci. Lett. 325, 119–123.PubMedCrossRefGoogle Scholar
  32. 32.
    Duda J.E., Lee V.M.Y., and Trojanowski J. (2000) Neuropathology of α-synuclein aggregates new insights into mechanisms of neurodegenerative disease. J. Neurosci. Res. 61, 121–127.PubMedCrossRefGoogle Scholar
  33. 33.
    Saha A.R., Ninkin N.N., Hanger D.P., and Bham D.A. (2000) Induction of neuronal death by alpha-synuclein. Eur. J. Neurosci. 12, 3073–3077.PubMedCrossRefGoogle Scholar
  34. 34.
    Conway K.A., Lee S.J., Rochet J.C., et al. (2000) Acceleration of oligomerization not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA 97, 571–576.PubMedCrossRefGoogle Scholar
  35. 35.
    Spira P.J., Sharpe D.M., Halliday G., Cavanagh J., and Nicholson G.A. (2001) Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr alpha-synuclein mutation. Ann. Neurol. 149, 313–319.CrossRefGoogle Scholar
  36. 36.
    Giasson B.I., Duda J.E., Quinn A.M., Zhang B., Trojanowski J.Q., and Lee V.M. (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein Neuron 34, 521–523.PubMedCrossRefGoogle Scholar
  37. 37.
    Cristina G.S., Ferrer I., Santidrian A.F., and Barrachina M. (2003) Dopamine induces autophagic cell death and α-synuclein increase in human neuroblastoma SH-SY5Y cells. J. Neurosci. Res. 73, 341–350.CrossRefGoogle Scholar
  38. 38.
    Hashimoto M., Rockenstein E., and Masliaii E. (2003) Transgenic models of α-synuclein Pathology past present, and future. Ann. NY Acad. Sci. 991, 171–188.PubMedCrossRefGoogle Scholar
  39. 39.
    Dawson T.M., Mandir A.S., and Lee M.K. (2002) Animal models of PD: pieces of the same puzzle? Neuron 35, 219–212.PubMedCrossRefGoogle Scholar
  40. 40.
    Feany M.B. and Bendera W.W. (2000) Drosophila model of Parkinson’s disease. Nature 404, 394–398.PubMedCrossRefGoogle Scholar
  41. 41.
    Sherer T.B., Betarbet R., Stout A.K., et al. (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered α-synuclein metabolism and oxidative damage. J. Neurosci. 22, 7006–7015.PubMedGoogle Scholar
  42. 42.
    Uversky V.N., Li J., and Fink A.L. (2001) Pesticides directly accelerate the rate of α-synuclein fibril formation: a possible factor in Parkinson’s disease. FEBS Lett. 500, 105–108.PubMedCrossRefGoogle Scholar
  43. 43.
    Masliah E., Rockenstein E., Veinbergs I., et al. (2000) Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269.PubMedCrossRefGoogle Scholar
  44. 44.
    Kostrzewa R.M. and Juan S.A. (2003) Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. Neurotox. Res. 5, 375–384.PubMedCrossRefGoogle Scholar
  45. 45.
    Betarbet R., Sherer T.B., Mackenzie G., Caucica-Osuna M., Panov A.V., and Greenamgre J.T. (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci. 3, 1301–1306.PubMedCrossRefGoogle Scholar
  46. 46.
    Orth M. and Schapira A.H.V. (2002) Mitochondrial involvement in Parkinson’s disease. Neurochem. Int. 40, 533–541.PubMedCrossRefGoogle Scholar
  47. 47.
    Vila M., Vukosavic S., Jackson L.V., Neystat M., Jakowec M., and Przedborski S. (2000) α-Synuclein up-regulation in substantia nigra of dopaminergic neurons following administration of the Parkinsonian toxin MPTP. J. Neurochem. 74, 721–729.PubMedCrossRefGoogle Scholar
  48. 48.
    Lim K.L., Dawson V., and Dawson T.M. (2003) The cast of molecular characters in Parkinson’s disease. Ann. NY Acad. Sci. 991, 80–92.PubMedCrossRefGoogle Scholar
  49. 49.
    Loo G.V., Saelens X., Gurp M.V., Farlane M.M., Martin S.J., and Vandenabeele P. (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ. 9, 1031–1042.PubMedCrossRefGoogle Scholar
  50. 50.
    Ameisen J.C. (2004) Looking for death at the core of life in the light of evolution. Cell Death Differ. 11, 4–10.PubMedCrossRefGoogle Scholar
  51. 51.
    Tatton W.G., Ruth C.R., Brown D., and Tatton N. (2003) Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann. Neurol. 53(Suppl. 3), s61-s72.PubMedCrossRefGoogle Scholar
  52. 52.
    Hsu L.J., Sagara Y., Arroyo A., et al. (2000) α-Synuclein promotes mitochondrial deficit and oxidative stress. Am. J. Pathol. 2, 401–410.Google Scholar
  53. 53.
    Hashimoto M., Takeda A., Hsu L.J., Takenouchi T., and Masliah E. (1999) Role of cytochrome c as a stimulator of α-synuclein aggregation in lewy body disease. J. Biol. Chem. 274, 28,849–28,852.Google Scholar
  54. 54.
    Yuan J.Y., Lipinski M., and Degterev A. (2003) Diversity in the mechanisms of neuronal cell death. Neuron 40, 401–413.PubMedCrossRefGoogle Scholar
  55. 55.
    Webb J.L., Ravikumar B., Atkins J., Skepper J.N., and Rubinsztein D.C. (2003) α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25,009–25,013.Google Scholar
  56. 56.
    Stefanis L., Larsen K.E., Rideout H.J., Sulzer D., and Greene L.A. (2001) Expression of A53T mutant but not wild-type alpha-synuclein in PC 12 cells induces alterations of the ubiquitin-dependent degradation system loss of dopamine release and autophagic cell death. J. Neurosci. 21, 9549–9560.PubMedGoogle Scholar
  57. 57.
    Xu J., Kao S.Y., Lee F.J.S., Song W.H., Jin L.W., and Yonkner B.A. (2002) Dopamine dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson’s disease. Nat. Med. 8, 600–606.PubMedCrossRefGoogle Scholar
  58. 58.
    Manning-Bog A. B., McCormack A.L., Purisai M.G., Bolin L.M., and Di Monte D.A. (2003) α-Synuclein overexpression protects against paraquat-induced neurodegeneration. J. Neurosci. 23, 3095–3099.PubMedGoogle Scholar
  59. 59.
    Rathke-Hartlieb S., Hahle P.J., Neumann M., et al. (2001) Sensitivity to MPTP is not increased in Parkinson’s disease-associated mutant α-synuclein transgenic mice. J. Neurochem. 77, 1181–1184.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang Y.X., Yang H., Cai Q., et al. (2003) The influence of overexpression α-synuclein EGFP on formation of inclusion and mitochondrial ultrastructure in SH-SY5Y cells in vitro. Chin. J. Neuroanal. 19, 251–256.Google Scholar
  61. 61.
    Dacosta C.A., Ancolio K., and Checler F. (2000) Wild type but not Parkinson’s disease-related ala-53-Thr mutant α-synuclein protects neuronal cells from apoptotic stimuli. J. Biol. Chem. 275, 24,065–24,069.Google Scholar
  62. 62.
    Taylor J.P., Hardy J., and Fischbeck K.H. (2002) Toxic proteins in neurodegenerative disease. Science 14, 1991–1995.CrossRefGoogle Scholar
  63. 63.
    Singleton A.B., Farrer M., Johnson J., et al. (2003) α-synuclein locus triplication causes Parkinson’s disease. Science 302, 841.PubMedCrossRefGoogle Scholar
  64. 64.
    Saleh A., Srinivasula S.M., Balkir L., Robbins P.D., and Alnemri E.S. (2000) Negative regulation of the Apaf-1 apoptosis by Hsp 70. Nat. Cell Biol. 2, 476–483.PubMedCrossRefGoogle Scholar
  65. 65.
    Ravagnan L., Gurbuxani S., Susin S.A., et al. (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat. Cell Biol. 3, 839–843.PubMedCrossRefGoogle Scholar
  66. 66.
    Auluck P.K., Edwin Chan H.Y., Trojanowski J.Q., Lee V.M.-Y., and Bonini N.M. (2002) Chaperonne suppression of α-synuclein toxicity in a drosophila model for Parkinson’s disease. Science 295, 865–868.PubMedCrossRefGoogle Scholar
  67. 67.
    Hashimoto M., Hsu L.J., Rockenstain E., Takenouchi T., Mallory M., and Masliah E. (2002) α-synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. J. Biol. Chem. 277, 11,465–11,472.Google Scholar
  68. 68.
    Tanaka Y.I., Engelender S., Igarashi S., et al. (2001) Inducible expression of mutant α-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum. Mol. Genet. 10, 919–926.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.Beijing Institute for NeuroscienceCapital University of Medical Science, Beijing Center of Neural Regeneration and RepairingBeijingChina

Personalised recommendations