Molecular Neurobiology

, Volume 31, Issue 1–3, pp 149–167 | Cite as

Poly(ADP-ribose) polymerase

The nuclear target in signal transduction and its role in brain ischemia-reperfusion injury
  • Robert Piotr Strosznajder
  • Henryk Jesko
  • Agata Zambrzycka
Article

Abstract

Poly(ADP-ribose) polymerase (PARP)-1 is a DNA nick sensor that transforms ADP-ribose from βNAD+ in the form of polymer to over 40 nuclear proteins, particularly to histones, several transcription factors, and PARP itself, modulating their activities and functions. PARP-1 activated by DNA breaks facilitates transcription, replication, and DNA base excision repair. The last studies indicate that PARP-1 is the new nuclear target for fast signals evoked in cell membranes by depolarization and cholinergic and glutaminergic receptors stimulation. Excessive activation of PARP-1 by peroxynitrate-evoked DNA damage during oxidative stress can cause cell death by NAD+/ATP depletion after ischemia-reperfusion injury, inflammation, and diabetes mellitus. The PARP-1 through interaction with nuclear factor-κB, p53, and other transcription factors might significantly modulate cell survival and death and a type of death pathway. The pharmacological modulation of PARP-1 might offer a new effective approach for neuroprotection.

Index Entries

PARP PARP-1 brain ischemia reperfusion NF-κB p53 neuroprotection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gaal J.C., Smith K.R., and Pearson C.K. (1987) Cellular euthanasia mediated by a nuclear enzyme: a central role for nuclear ADP-ribosylation in cellular methabolism. Trends Biochem. Sci. 12, 129–130.CrossRefGoogle Scholar
  2. 2.
    Satoh M.S. and Lindahl T. (1992) Role of poly(ADP-ribose) formation in DNA repair. Nature 356, 356–358.PubMedCrossRefGoogle Scholar
  3. 3.
    Ziegler M. and Oei S.L. (2001) A cellular survival switch: poly(ADP-ribosyl)ation stimulates DNA repair and silences transcription. Bioessays 23, 543–548.PubMedCrossRefGoogle Scholar
  4. 4.
    Smith S. (2001) The world according to PARP. Trends Biochem. Sci. 26, 174–179.PubMedCrossRefGoogle Scholar
  5. 5.
    Herzeg Z. and Wang Z.Q(2001) Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat. Res. 477, 97–110.Google Scholar
  6. 6.
    de Murcia G. and Móissier de Murcia J. (1994) Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem. Sci. 19, 172–176.PubMedCrossRefGoogle Scholar
  7. 7.
    de Murcia G., Schreiber V., Molinete M., et al. (1994) Structure and function of poly(ADP-ribose) polymerase. Mol. Cell. Biochem. 138, 15–24.PubMedCrossRefGoogle Scholar
  8. 8.
    Lindahl T., Satoh M.S., Poirier G.G., and Klungland A. (1995) Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem. Sci. 20, 405–411.PubMedCrossRefGoogle Scholar
  9. 9.
    Masson M., Rolli V., Dantzer F., et al. (1995) Poly(ADP-ribose) polymerase: structure-function relationship. Biochimie 77, 456–461.PubMedCrossRefGoogle Scholar
  10. 10.
    Nagele A. (1995) Poly(ADP-ribosyl)ation as a fail-safe, transcription-independent, suicide mechanism in acutely DNA-damaged cells: a hypothesis. Radiat. Environ. Biophys. 34, 251–254.PubMedCrossRefGoogle Scholar
  11. 11.
    Althaus F.R. (1992) Poly ADP-ribosylation: a histone shuttle mechanism in DNA excision repair. J Cell Sci. 102, 663–670.PubMedGoogle Scholar
  12. 12.
    Hassa P.O. and Hottiger M.O. (2002) The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell. Mol. Life Sci. 59, 1534–1553.PubMedCrossRefGoogle Scholar
  13. 13.
    D’Amours D., Desnoyers S., D’Silva I., and Poirier G.G. (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342, 249–268.PubMedCrossRefGoogle Scholar
  14. 14.
    Pleschke J.M., Kleczkowska H.E., Strohm M., and Althaus F.R. (2000) Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J. Biol. Chem. 275, 40,974–40,980.CrossRefGoogle Scholar
  15. 15.
    Malanga M., Pleschke J.M., Kleczkowska H.E., and Althaus F.R. (1998) Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions. J. Biol. Chem. 273, 11,839–11,843.CrossRefGoogle Scholar
  16. 16.
    Hayaishi O. and Ueda K. (1982) ADP-ribosylation reactions biology and medicine, in Molecular Biology An Int Series of Monographs. (Horecker, B., Kaplan, N., Marmur, J., and Scheraga, A., eds.), Academic Press, New York, London.Google Scholar
  17. 17.
    Lautier D., Lagueux J., Thibodeau J., Menard L., and Poirier G.G. (1993) Molecular and biochemical features of poly (ADP-ribose) metabolism. Mol. Cell. Biochem. 122, 171–193.PubMedCrossRefGoogle Scholar
  18. 18.
    Hassa P.O. and Hottiger M.O. (1999) A role of poly (ADP-ribose) polymerase in NF-kappaB transcriptional activation. Biol. Chem. 380, 953–959.PubMedCrossRefGoogle Scholar
  19. 19.
    Jeggo P.A. (1998) DNA repair: PARPanother guardian angel? Curr. Biol. 8, R49-R51.PubMedCrossRefGoogle Scholar
  20. 20.
    Grube K. and Burkle A. (1992) Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span. Proc. Natl. Acad. Sci. USA 89, 11,759–11,763.CrossRefGoogle Scholar
  21. 21.
    Strosznajder R.P., Zambrzycka A., Jesko H., and Strosznajder J.B. (2004) Poly(ADP-ribose) polymerase, the new nuclear target for glutaminergic and cholinergic signaling is affected by brain aging and neurotoxic peptides. ISN Satellite Meeting “Oxidative Stress in Neurodegenerative Disorders,” pp. S1–S4.Google Scholar
  22. 22.
    Burkle A. (2001) PARP-1: a regulator of genomic stability linked with mammalian longevity. Chembiochem 2, 725–728.PubMedCrossRefGoogle Scholar
  23. 23.
    Messripour M., Weltin D., Rastegar A., et al. (1994) Age-associated changes of rat brain neuronal and astroglial poly(ADP-ribose) polymerase activity. J. Neurochem. 62, 502–506.PubMedCrossRefGoogle Scholar
  24. 24.
    Strosznajder J.B., Jesko H., and Strosznajder R.P. (2000) Effect of amyloid beta peptide on poly(ADP-ribose) polymerase activity in adult and aged rat hippocampus. Acta Biochim. Pol. 47, 847–854.PubMedGoogle Scholar
  25. 25.
    Chiarugi A. (2002) Poly(ADP-ribose) polymerase: killer or conspirator? The suicide hypothesis revisited. Trends Pharmacol. Sci. 23(3), 122–129.PubMedCrossRefGoogle Scholar
  26. 26.
    Sallmann F.R., Vodenicharov M.D., Wang Z.Q and Poirier G.G. (2000) Characterization of sPARP-1. An alternative product of PARP-1 gene with poly(ADP-ribose) polymerase activity independent of DNA strand breaks. J. Biol. Chem. 275, 15,504–15,511.CrossRefGoogle Scholar
  27. 27.
    Ame J.C., Rolli V., Schreiber V., et al. (1999) PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 274, 17,860–17,868.CrossRefGoogle Scholar
  28. 28.
    Dantzer F., Giraud-Panis M.-J., Jaco I., et al. (2004) Functional interaction between poly (ADP-ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol. Cell. Biol. 24, 1595–1607.PubMedCrossRefGoogle Scholar
  29. 29.
    Johansson M. (1999) A human poly(ADP-ribose) polymerase gene family (ADPRTL): cDNA cloning of two novel poly(ADP-ribose) polymerase homologues. Genomics 57, 442–445.PubMedCrossRefGoogle Scholar
  30. 30.
    Schreiber V., Ame J.-C., Dolle P., et al. (2002) Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC-1. J. Biol. Chem. 277, 23,028–23,036.CrossRefGoogle Scholar
  31. 31.
    Smith S., Giriat I., Schmitt A., and de Lange T. (1998) Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282, 1484–1487.PubMedCrossRefGoogle Scholar
  32. 32.
    Smith S. and de Lange T. (2000) Tankyrase promotes telomere elongation in human cells. Curr. Biol. 10, 1299–1302.PubMedCrossRefGoogle Scholar
  33. 33.
    Chi N.W. and Lodish H.F. (2000) Tankyrase is a golgi-associated MAP kinase substrate that interacts with IRAP in GLUT4 vesicles. J. Biol. Chem. 275, 38,437–38,444.Google Scholar
  34. 34.
    Lyons R.J., Deane R., Lynch D.K., et al. (2001) Identification of a novel human tankyrase through its interaction with the adaptor protein Grb14. J. Biol. Chem. 276, 17,172–17,180.Google Scholar
  35. 35.
    Kaminker P.G., Kim S.H., Taylor R.D., et al. (2001) TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression. J. Biol. Chem. 276, 35,891–35,899.CrossRefGoogle Scholar
  36. 36.
    Kickhoefer V.A., Siva A.C., Kedersha N.L., et al. (1999) The 193kD ault protein, VPARP, is a novel poly(ADP-ribose) polymerase. J. Cell Biol. 146, 917–928.PubMedCrossRefGoogle Scholar
  37. 37.
    Pieper A.A., Blackshaw S., Clements E.E., et al. (2000) Poly(ADP-ribosyl)ation basally activated by DNA strand breaks reflects glutamate-nitric oxide neurotransmission. Proc. Natl. Acad. Sci. USA 97, 1845–1850.PubMedCrossRefGoogle Scholar
  38. 38.
    Masson M., Niedergang C., Schreiber V., Muller S., Menissier-de Murcia J., and de Murcia G. (1998) XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol. Cell. Biol. 18, 3563–3571.PubMedGoogle Scholar
  39. 39.
    Banasik M. and Ueda K. (1994) Inhibitors and activators of ADP-ribosylation reactions. Mol. Cell. Biochem. 138, 185–197.PubMedCrossRefGoogle Scholar
  40. 40.
    Kun E., Kirsten E., Mendeleyev J., and Ordahl C.P. (2004) Regulation of enzymatic catalysis of poly(ADP-ribose) polymerase by dsDNA, polyamines, Mg2,+Ca2,+histones H1 and H3 and ATP. Biochemistry 43, 210–216.PubMedCrossRefGoogle Scholar
  41. 41.
    Virag L. and Szabo C. (2001) Purines inhibit poly(ADP-ribose) polymerase activation and modulate oxidant-induced cell death. FASEB J. 15, 99–107.PubMedCrossRefGoogle Scholar
  42. 42.
    Ruscetti T., Lehnert B.E., Halbrook J., et al. (1998) Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J. Biol. Chem. 273, 14,461–14,467.CrossRefGoogle Scholar
  43. 43.
    Susse S., Scholz C.J., Burkle A., and Wiesmuller L. (2004) Poly(ADP-ribose) polymerase (PARP-1) and p53 independently function in regulating double-strand break repair in primate cells. Nucleic Acids Res. 32(2), 669–680.PubMedCrossRefGoogle Scholar
  44. 44.
    Homburg S., Visochek L., Moran N., et al. (2000) A fast singal-induced activation of poly(ADP-ribose) polymerase: a novel downstream target of phospholipase C. J. Cell Biol. 150, 293–307.PubMedCrossRefGoogle Scholar
  45. 45.
    Strosznajder R.P., Jesko H., and Strosznajder J. (1999) NMDA receptor mediated PARP activity in hippocampus of adult and aged brain. Effect of amyloid. Biochimie 81(Suppl. 6), s273.Google Scholar
  46. 46.
    Zambrzycka A. and Strosznajder J.B. (2001) Effect of amyloid beta peptide on cholinergic receptor mediated poly(ADP-ribose)polymerase activity in rat brain. Folia Neuropathol. 39(Suppl. A), 51–54.Google Scholar
  47. 47.
    Eliasson M.J., Sampei K., Mandir A.S., et al. (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat. Med. 3, 1089–1095.PubMedCrossRefGoogle Scholar
  48. 48.
    Endres M., Wang Z.Q.,Namura S., Waeber C., and Moskowitz M.A. (1997) Ischemic brain injury is mediated by the activation of poly(ADP-ribose) polymerase. J. Cereb. Blood Flow Metab. 17, 1143–1151.PubMedCrossRefGoogle Scholar
  49. 49.
    Mandir A.S., Poitras M.F., Berliner A.R., et al. (2000) NMDA but not non-NMDA excitotoxicity is mediated by poly(ADP-ribose) polymerase. J. Neurosci. 20, 8005–8011.PubMedGoogle Scholar
  50. 50.
    Dawson V.L., Dawson T.M., London E.D., Bredt D.S., and Snyder S.H. (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88(14), 6368–6371.PubMedCrossRefGoogle Scholar
  51. 51.
    Hatfield R.H., Gill R., and Brazell C. (1992) The dose-response relationship and therapeutic window for dizocilpine (MK-801) in a rat focal ischaemia model. Eur. J. Pharmacol. 216, 1–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Chalimoniuk M. and Strosznajder J. (1998) NMDA receptor-dependent nitric oxide and cGMP synthesis in brain hemispheres and cerebellum during reperfusion after transient forebrain ischemia in gerbils: effect of 7-nitroindazole. J. Neurosci. Res. 54, 681–690.PubMedCrossRefGoogle Scholar
  53. 53.
    Lo E.H., Bosque-Hamilton P., and Meng W. (1998) Inhibition of poly(ADP-ribose) polymerasereduction of ischemic injury and attenuation of N-methyl-d-aspartate-induced neurotransmitter dysregulation Stroke 29, 830–836.PubMedGoogle Scholar
  54. 54.
    Szabo C. and Dawson V.L. (1998) Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol. Sci. 19(7), 287–298.PubMedCrossRefGoogle Scholar
  55. 55.
    Beckman J.S. and Crow J.P. (1993) Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem. Soc. Trans. 21, 330–334.PubMedGoogle Scholar
  56. 56.
    Endres M., Scott G., Namura S., et al. (1998) Role of peroxynitrite and neuronal nitric oxide synthase in the activation of poly(ADP-ribose) synthetase in a murine model of cerebral ischemia-reperfusion. Neurosci. Lett. 248, 41–44.PubMedCrossRefGoogle Scholar
  57. 57.
    Yu S.W., Wang H., Dawson T.M., and Dawson V.L. (2003) Poly(ADP-ribose) polymerase-1 and apoptosis inducing factor in neurotoxicity. Neurobiol. Dis. 14(3), 303–317.PubMedCrossRefGoogle Scholar
  58. 58.
    Yu S.W., Wang H., Poitras M.F., et al. (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science. 297(5579), 259–263.PubMedCrossRefGoogle Scholar
  59. 59.
    Chiarugi A. and Moskowitz M.A. (2002) PARP-1a — perpetrator of apoptotic cell death? Science 297, 200–201.PubMedCrossRefGoogle Scholar
  60. 60.
    Takahashi K., Greenberg J.H., Jackson P., Maclin K., and Zhang J. (1997) Neuroprotective effects of inhibiting poly(ADP-ribose) synthetase on focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 17, 1137–1142.PubMedCrossRefGoogle Scholar
  61. 61.
    Takahashi K. and Greenberg J.H. (1999) The effect of reperfusion on neuroprotection using an inhibitor of poly(ADP-ribose) polymerase. Neuroreport 10, 2017–2022.PubMedCrossRefGoogle Scholar
  62. 62.
    Zingarelli B., Cuzzocrea S., Zsengeller Z., Salzman A.L., and Szabo C. (1997) Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly(ADP-ribose) synthetase. Cardiovasc. Res. 36, 205–215.PubMedCrossRefGoogle Scholar
  63. 63.
    Zingarelli B., Salzman A.L., and Szabo C. (1998) Genetic disruption of poly(ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ. Res. 83, 85–94.PubMedGoogle Scholar
  64. 64.
    Plaschke K., Kopitz J., Weigand M.A., Martin E., and Bardenheuer H.J. (2000) The neuroprotective effect of cerebral poly(ADP-ribose) polymerase inhibition in a rat model of global ischemia. Neurosci. Lett. 284(1–2), 109–112.PubMedCrossRefGoogle Scholar
  65. 65.
    Nagayama T., Simon R.P., Chen D., et al. (2000) Activation of poly(ADP-ribose) polymerase in the rat hippocampus may contribute to cellular recovery following sublethal transient global ischemia. J. Neurochem. 74(4), 1636–1645.PubMedCrossRefGoogle Scholar
  66. 66.
    Moroni F., Meli E., Peruginelli F., et al. (2001) Poly(ADP-ribose)polymerase inhibitors attenuate necrotic but not apoptotic neuronal death in experimental models of cerebral ischemia. Cell Death Differ. 8(9), 921–932.PubMedCrossRefGoogle Scholar
  67. 67.
    Strosznajder R.P., Gadamski R., Czapski G.A., Jesko H., and Strosznajder J.B. (2003) Poly(ADP-ribose) polymerase during reperfusion after transient forebrain ischemia: its role in brain edema and cell death. J. Mol. Neurosci. 20, 61–72.PubMedCrossRefGoogle Scholar
  68. 68.
    Thiemermann C., Bowes J., Myint F.P., and Vane J.R. (1997) Inhibition of the activity of poly (ADP-ribose) synthetase reduces ischemia-reperfusion injury in the heart and skeletal muscle. Proc. Natl. Acad. Sci. USA 94, 679–683.PubMedCrossRefGoogle Scholar
  69. 69.
    Tokime T., Nozaki K., Sugino T., Kikuchi H., Hashimoto N., and Ueda K. (1998) Enhanced poly(ADP-ribosyl)ation after focal ischemia in rat brain. J. Cereb. Blood Flow Metab. 18, 991–997.PubMedCrossRefGoogle Scholar
  70. 70.
    Milam K.M. and Cleaver J.E. (1984) Inhibitors of poly(adenosine diphosphate-ribose) synthesis: effect on other metabolic processes. Science 223, 589–591.PubMedCrossRefGoogle Scholar
  71. 71.
    Johnson G.S. (1981) Benzamide and its derivatives inhibit nicotinamide methylation as well as ADP-ribosylation. Biochem. Int. 2, 611–617.Google Scholar
  72. 72.
    Strosznajder R.P. and Walski M. (2004) Effect of 3-aminobenzamide on ultrastructural alteration in CA1 layer of hippocampus after global ischemia in gerbils. J. Physiol. Pharmacol., 55, Suppl. 3, 127–133.PubMedGoogle Scholar
  73. 73.
    Martin L.J., Al-Abdulla N.A., Brambrink A.M., Kirsch J.R., Sieber F.E., and Portera-Cailliau C. (1998) Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. Brain Res. Bull. 46, 281–309.PubMedCrossRefGoogle Scholar
  74. 74.
    Lipton P. (1999) Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568.PubMedGoogle Scholar
  75. 75.
    Nicotera P., Leist M., and Manzo L. (1999) Neuronal cell death: a demise with different shapes. Trends Pharmacol. Sci. 20, 46–51.PubMedCrossRefGoogle Scholar
  76. 76.
    Liu J., Ying W., Massa S., et al. (2000) Effects of transient global ischemia and kainate on poly(ADP-ribose) polymerase (PARP) gene expression and proteolytic cleavage in gerbil and rat brains. Brain Res. Mol. Brain Res. 80, 7–16.PubMedCrossRefGoogle Scholar
  77. 77.
    Fukuda T., Wang H., Nakanishi H., Yamamoto K., and Kosaka T. (1999) Novel non-apoptotic morphological changes in neurons of the mouse hippocampus following transient hypoxic-ischemia. Neurosci. Res. 33, 49–55.PubMedCrossRefGoogle Scholar
  78. 78.
    Couturier J.Y., Ding-Zhou L., Croci N., Plotkine M., and Margaill I. (2003) 3-Aminobenzamide reduces brain infarction and neutrophil infiltration after transient focal cerebral ischemia in mice. Exp. Neurol. 184(2), 973–980.PubMedCrossRefGoogle Scholar
  79. 79.
    Lo E.H., Bosque-Hamilton P., and Meng W. (1998) Inhibition of poly(ADP-ribose) polymerase: reduction of ischemic injury and attenuation of N-methyl-d-aspartate-induced neurotransmitter dysregulation. Stroke 29(4), 830–836.PubMedGoogle Scholar
  80. 80.
    Ding Y., Zhou Y., Lai Q.,Li J., Gordon V., and Diaz F.G. (2001) Long-term neuroprotective effect of inhibiting poly(ADP-ribose) polymerase in rats with middle cerebral artery occlusion using a behavioral assessment. Brain Res. 915(2), 210–217.PubMedCrossRefGoogle Scholar
  81. 81.
    Takahashi K., Pieper A.A., Croul S.E., Zhang J., Snyder S.H., and Greenberg J.H. (1999) Post-treatment with an inhibitor of poly(ADP-ribose) polymerase attenuates cerebral damage in focal ischemia. Brain Res. 829(1–2), 46–54.PubMedCrossRefGoogle Scholar
  82. 82.
    Oliver F.J., Menissier-de Murcia J., Nacci C., et al. (1999) Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly(ADP-ribose) polymerase-1 deficient mice. EMBO J. 18, 4446–4454.PubMedCrossRefGoogle Scholar
  83. 83.
    Agarwal M.L., Agarwal A., Taylor W.R., Wang Z.Q Wagner E.F., and Stark G.R. (1997) Defective induction but normal activation and function of p53 in mouse cells lacking poly-ADP-ribose polymerase. Oncogene 15, 1035–1041.PubMedCrossRefGoogle Scholar
  84. 84.
    Schmid G., Wang Z.Q and Wesierska-Gadek J. (1999) Compensatory expression of p73 in PARP-deficient mouse fibroblasts as response to a reduced level of regularly spliced wild-type p53 protein. Biochem. Biophys. Res. Commun. 255, 399–405.PubMedCrossRefGoogle Scholar
  85. 85.
    Amstad P.A., Krupitza G., and Cerutti P.A. (1992) Mechanism of c-fos induction by active oxygen. Cancer Res. 52, 3952–3960.PubMedGoogle Scholar
  86. 86.
    Ha H.C., Hester L.D., and Snyder S.H. (2002) Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc. Natl. Acad. Sci. USA 99, 3270–3275.PubMedCrossRefGoogle Scholar
  87. 87.
    Chiarugi A. and Moskowitz M.A. (2003) Poly(ADP-ribose) polymerase-1 activity promotes NF-κB-driven transcription and microglial activation: implication for neurodegenerative disorders. J. Neurochem. 85, 306–317.PubMedGoogle Scholar
  88. 88.
    Hassa P.O., Covic M., Hasan S., Imhof R., and Hottiger M.O. (2001) The enzymatic and DNA binding activity of PARP-1 are not required for NF-kappa B coactivator function. J. Biol. Chem. 276, 45,588–45,597.CrossRefGoogle Scholar
  89. 89.
    Kameoka M., Ota K., Tetsuka T., et al. (2000) Evidence for regulation of NF-kappaB by poly(ADP-ribose) polymerase. Biochem. J. 346, 641–649.PubMedCrossRefGoogle Scholar
  90. 90.
    Wesierska-Gadek J., Wojciechowski J., and Schmid G. (2003) Phosphorylation regulates the interaction and complex formation between wt p53 protein and PARP-1. J. Cell Biochem. 89(6), 1260–1284.PubMedCrossRefGoogle Scholar
  91. 91.
    Simbulan-Rosenthal C.M., Rosenthal D.S., Luo R.B., et al. (2001) Poly(ADP-ribosyl)ation of p53 in vitro and in vivo modulates binding to its DNA consensus sequence. Neoplasia 3, 179–188.PubMedCrossRefGoogle Scholar
  92. 92.
    Mendoza-Alvarez H. and Alvarez-Gonzalez R. (2001) Regulation of p53 sequence-specific DNA-binding by covalent poly(ADP-ribosyl)ation. J. Biol. Chem. 276(39), 36,425–36,430.CrossRefGoogle Scholar
  93. 93.
    Wesierska-Gadek J. and Schmid G. (2000) Overexpressed poly(ADP-ribose) polymerase delays the release of rat cells from p53-mediated G(1) checkpoint. J. Cell Biochem. 80(1), 85–103.PubMedCrossRefGoogle Scholar
  94. 94.
    Wesierska-Gadek J. and Schmid G. (2001) Poly(ADP-ribose) polymerase-1 regulates the stability of the wild-type p53 protein. Cell. Mol. Biol. Lett. 6(2), 117–140.PubMedGoogle Scholar
  95. 95.
    Mandir A.S., Simbulan-Rosenthal C.M., Poitras M.F., et al. (2002) A novel in vivo post-translational modification of p53 by PARP-1 in MPTP-induced parkinsonism. J. Neurochem. 83(1), 186–192.PubMedCrossRefGoogle Scholar
  96. 96.
    Wesierska-Gadek J., Wang Z.Q and Schmid G. (1999) Reduced stability of regularly spliced but not alternatively spliced p53 protein in PARP-deficient mouse fibroblasts. Cancer Res. 59(1), 28–34.PubMedGoogle Scholar
  97. 97.
    Wesierska-Gadek J., Wojciechowski J., and Schmid G. (2003) Central and carboxy-terminal regions of human p53 protein are essential for interaction and complex formation with PARP-1. J. Cell. Biochem. 89(2), 220–232.PubMedCrossRefGoogle Scholar
  98. 98.
    Valenzuela M.T., Guerrero R., Nńez M.I., et al. (2002) PARP-1 modifies the effectiveness of p53-mediated DNA damage response. Oncogene 21(7), 1108–1116.PubMedCrossRefGoogle Scholar
  99. 99.
    Vaziri H., West M.D., Allsopp R.C., et al. (1997) ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J. 16(19), 6018–6033.PubMedCrossRefGoogle Scholar
  100. 100.
    Wang X., Ohnishi K., Takahashi A., and Ohnishi T. (1998) Poly(ADP-ribosyl)ation is required for p53-dependent signal transduction induced by radiation. Oncogene 17(22), 2819–2825.PubMedCrossRefGoogle Scholar
  101. 101.
    Whitacre C.M., Hashimoto H., Tsai M.L., Chatterjee S., Berger S.J., and Berger N.A. (1995) Involvement of NAD-poly(ADP-ribose) metabolism in p53 regulation and its consequences. Cancer Res. 55(17), 3697–3701.PubMedGoogle Scholar
  102. 102.
    Wieler S., Gagne J.P, Vaziri H., Poirier G.G., and Benchimol S. (2003) Poly(ADP-ribose) poly-merase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J. Biol. Chem. 278(21), 18,914–18,921.CrossRefGoogle Scholar
  103. 103.
    Tomasevic G., Shamloo M., Israeli D., and Wieloch T. (1999) Activation of p53 and its target genes p21(WAF1/Cip1) and PAG608/Wig-1 in ischemic preconditioning. Brain Res. Mol. Brain Res. 70, 304–313.PubMedCrossRefGoogle Scholar
  104. 104.
    Simbulan-Rosenthal C.M., Rosenthal D.S., Luo R., and Smulson M.E. (1999) Poly(ADP-ribosyl)ation of p53 during apoptosis in human osteosarcoma cells. Cancer Res. 59(9), 2190–2194.PubMedGoogle Scholar
  105. 105.
    Kumari S.R., Mendoza-Alvarez H., and Alvarez-Gonzalez R. (1998) Functional interactions of p53 with poly(ADP-ribose) polymerase (PARP) during apoptosis following DNA damage: covalent poly(ADP-ribosyl)ation of p53 by exogenous PARP and noncovalent binding of p53 to the M(r) 85,000 proteolytic fragment. Cancer Res. 58(22), 5075–5078.PubMedGoogle Scholar
  106. 106.
    Kraus W.L. and Lis J.T. (2003) PARP goes transcription. Cell 113, 677–683.PubMedCrossRefGoogle Scholar
  107. 107.
    Potvin F., Roy R.J., Poirier G.G., and Guerin S.L. (1993) The US-1 element from the gene encoding rat poly(ADP-ribose) polymerase binds the transcription factor Sp1. Eur. J. Biochem. 215, 73–80.PubMedCrossRefGoogle Scholar
  108. 108.
    Oei S.L., Griesenbeck J., Schweiger M., Babich V., Kropotov A., and Tomilin N. (1997) Interaction of the transcription factor YY1 with human poly(ADP-ribosyl) transferase. Biochem. Biophys. Res. Commun. 240, 108–111.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Robert Piotr Strosznajder
    • 1
  • Henryk Jesko
    • 2
  • Agata Zambrzycka
    • 2
  1. 1.Department of NeurophysiologyPolish Academy of SciencesWarsawPoland
  2. 2.Department of Cellular Signaling, Medical Research CentrePolish Academy of SciencesWarsawPoland

Personalised recommendations