Molecular Neurobiology

, Volume 29, Issue 3, pp 213–227 | Cite as

Homer/vesl proteins and their roles in CNS neurons

  • Markus U. Ehrengruber
  • Akihiko Kato
  • Kaoru Inokuchi
  • Sonia Hennou


Since their initial discovery in 1997, Homer/Vesl proteins have become increasingly investigated as putative regulators of receptor and ion-channel function in the central nervous system. Within a relatively brief period, numerous research reports have described manifold effects of Homer proteins, including the modulation of the trafficking of type I metabotropic glutamate receptors (mGluRs), axonal pathfinding, mGluR coupling to calcium and potassium channels, agonist-independent mGluR activity, ryanodine receptor regulation, locomotor activity, and behavioral plasticity. This review summarizes our current knowledge on the induction, expression, and structure of the various forms of Homer proteins, as well as their roles in neuronal function. In addition, we provide an outlook on novel developments with regard to the involvement of Homer-1a in hippocampal synaptic function.

Index Entries

hippocampus immediate early gene inositol (1,4,5)-trisphosphate receptor metabotropic glutamate receptor ryanodine receptor Shank protein synaptic transmission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shiraishi Y., Mizutani A., Bito H., Fujisawa K., Narumiya S., Mikoshiba K., et al. (1999) Cupidin, an isoform of Homer/Vesl, interacts with the actin cytoskeleton and activated Rho family small GTPases and is expressed in developing mouse cerebellar granule cells. J. Neurosci. 19, 8389–8400.PubMedGoogle Scholar
  2. 2.
    Kato A., Fukuda T., Fukazawa Y., Isojima Y., Fujitani K., et al. (2001) Phorbol esters promote postsynaptic accumulation of Vesl-1S/Homer-1a protein. Eur. J. Neurosci. 13, 1292–1302.PubMedCrossRefGoogle Scholar
  3. 3.
    Sala C., Piëch V., Wilson N.R., Passafaro M., Liu G., and Sheng M. (2001) Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115–130.PubMedCrossRefGoogle Scholar
  4. 4.
    Usui S., Konno D., Hori K., Maruoka H., Okabe S., Fujikado T., et al. (2003) Synaptic targeting of PSD-Zip45 (Homer 1c) and its involvement in the synaptic accumulation of F-actin. J. Biol. Chem. 278, 10,619–10,628.Google Scholar
  5. 5.
    Kato A., Ozawa F., Saitoh Y., Fukazawa Y., Sugiyama H., and Inokuchi K. (1998) Novel members of the Vesl/Homer family of PDZ proteins that bind metabotropic glutamate receptors. J. Biol. Chem. 273, 23,969–23,975.Google Scholar
  6. 6.
    Xiao B., Tu J.C., Petralia R.S., Yuan J.P., Doan A., Breder C.D., et al. (1998) Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of Homer-related, synaptic proteins. Neuron 21, 707–716.PubMedCrossRefGoogle Scholar
  7. 7.
    Diagana T.T., Thomas U., Prokopenko S.N., Xiao B., Worley P.F., and Thomas J.B. (2002) Mutation of Drosophila homer disrupts control of locomotor activity and behavioral plasticity. J. Neurosci. 22, 428–436.PubMedGoogle Scholar
  8. 8.
    Brakeman P.R., Lanahan A.A., O’Brien R., Roche K., Barnes C.A., Huganir R.L., et al. (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386, 284–288.PubMedCrossRefGoogle Scholar
  9. 9.
    Kato A., Ozawa F., Saitoh Y., Hirai K., and Inokuchi K. (1997) vesl, a gene encoding VASP/Ena family related protein, is upregulated during seizure, long-term potentiation and synaptogenesis. FEBS Lett. 412, 183–189.PubMedCrossRefGoogle Scholar
  10. 10.
    Berke J.D., Paletzki R.F., Aronson G.J., Hyman S.E., and Gerfen C.R. (1998) A complex program of striatal gene expression induced by dopaminergic stimulation. J. Neurosci. 18, 5301–5310.PubMedGoogle Scholar
  11. 11.
    Bottai D., Guzowski J.F., Schwarz M.K., Kang S.H., Xiao B., Lanahan A., et al. (2002) Synaptic activity-induced conversion of intronic to exonic sequence in Homer 1 immediate early gene expression. J. Neurosci. 22, 167–175.PubMedGoogle Scholar
  12. 12.
    Sun J., Tadokoro S., Imanaka T., Murakami S.D., Nakamura M., Kashiwada K., et al. (1998) Isolation of PSD-Zip45, a novel Homer/ves1 family protein containing leucine zipper motifs, from rat brain. FEBS Lett. 437, 304–308.PubMedCrossRefGoogle Scholar
  13. 13.
    Soloviev M.M., Ciruela F., Chan W.-Y., and McIlhinney R.A.J. (2000) Mouse brain and muscle tissues constitutively express high levels of Homer proteins. Eur. J. Biochem. 267, 634–639.PubMedCrossRefGoogle Scholar
  14. 14.
    Kaja S., Yang S.-H., Wei J., Fujitani K., Liu R., Brun-Zinkernagel A.-M., et al. (2003) Estrogen protects the inner retina from apoptosis and ischemia-induced loss of Vesl-1L/Homer 1c immunoreactive synaptic connections. Invest. Ophthalmol. Vis. Sci. 44, 3155–3162.PubMedCrossRefGoogle Scholar
  15. 15.
    Sandonà D., Tibaldo E., and Volpe P. (2000) Evidence for the presence of two Homer 1 transcripts in skeletal and cardiac muscles. Biochem. Biophys. Res. Commun. 279, 348–353.PubMedCrossRefGoogle Scholar
  16. 16.
    Fanning A.S. and Anderson J.M. (1998) PDZ domains and the formation of protein networks at the plasma membrane. Curr. Top. Microbiol. Immunol. 228, 209–233.PubMedGoogle Scholar
  17. 17.
    Hata Y., Nakanishi H., and Takai Y. (1998) Synaptic PDZ domain-containing proteins. Neurosci. Res. 32, 1–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Gertler F.B., Niebuhr K., Reinhard M., Wehland J., and Soriano P. (1996) Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239.PubMedCrossRefGoogle Scholar
  19. 19.
    Haffner C., Jarchau T., Reinhard M., Hoppe J., Lohmann S.M., and Walter U. (1995) Molecular cloning, structural analysis and functional expression of the proline-rich focal adhesion and microfilament-associated protein VASP. EMBO J. 14, 19–27.PubMedGoogle Scholar
  20. 20.
    Reinhard M., Halbrugge M., Scheer U., Wiegand C., Jockusch B.M., and Walter U. (1992) The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J. 11, 2063–2070.PubMedGoogle Scholar
  21. 21.
    Callebaut I., Cossart P., and Dehoux P. (1998) EVH1/WH1 domains of VASP and WASP proteins belong to a large family including Ranbinding domains of the RanBP1 family. FEBS Lett. 441, 181–185.PubMedCrossRefGoogle Scholar
  22. 22.
    Tu J.C., Xiao B., Yuan J.P., Lanahan A.A., Leoffert K., Li M., et al. (1998) Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21, 717–726.PubMedCrossRefGoogle Scholar
  23. 23.
    Beneken J., Tu J.C., Xiao B., Nuriya M., Yuan J.P., Worley P.F., et al. (2000) Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition. Neuron 26, 143–154.PubMedCrossRefGoogle Scholar
  24. 24.
    Tadokoro S., Tachibana T., Imanaka T., Nishida W., and Sobue K. (1999) Involvement of unique leucine-zipper motif of PSD-Zip45 (Homer 1c/vesl-1L) in group 1 metabotropic glutamate receptor clustering. Proc. Natl. Acad. Sci. USA 96, 13,801–13,806.CrossRefGoogle Scholar
  25. 25.
    Roche K.W., Tu J.C., Petralia R.S., Xiao B., Wenthold R.J., and Worley P.F. (1999) Homer 1b regulates the trafficking of group 1 metabotropic glutamate receptors. J. Biol. Chem. 274, 25,953–25,957.CrossRefGoogle Scholar
  26. 26.
    Coutinho V., Kavanagh I., Sugiyama H., Tones M.A., and Henley J.M. (2001) Characterization of a metabotropic glutamate receptor type 5-green fluorescent protein chimera (mGluR5-GFP): pharmacology, surface expression, and differential effects of Homer-1a and Homer-1c. Mol. Cell Neurosci. 18, 296–306.PubMedCrossRefGoogle Scholar
  27. 27.
    Ciruela F., Soloviev M.M., and McIlhinney R.A.J. (1999) Co-expression of metabotropic glutamate receptor type 1α with Homer-1a/Vesl-1S increases the cell surface expression of the receptor. Biochem. J. 341, 795–803.PubMedCrossRefGoogle Scholar
  28. 28.
    Ciruela F., Soloviev M.M., Chan W.-Y., and McIlhinney R.A.J. (2000) Homer-1c/Vesl-1L modulates the cell surface targeting of metabotropic glutamate receptor type 1α: evidence for an anchoring function. Mol. Cell. Neurosci. 15, 36–50.PubMedCrossRefGoogle Scholar
  29. 29.
    Ango F., Pin J.-P., Tu J.C., Xiao B., Worley P.F., Bockaert J., et al. (2000) Dendritic and axonal targeting of type 5 metabotropic glutamate receptor is regulated by Homer1 proteins and neuronal excitation. J. Neurosci. 20, 8710–8716.PubMedGoogle Scholar
  30. 30.
    Berridge M.J. (1998) Neuronal calcium signaling. Neuron 21, 13–26.PubMedCrossRefGoogle Scholar
  31. 31.
    Satoh T., Ross C.A., Villa A., Supattapone S., Pozzan T., Snyder S.H., et al. (1990) The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment. J. Cell Biol. 111, 615–624.PubMedCrossRefGoogle Scholar
  32. 32.
    MacKrill J.J. (1999) Protein-protein interactions in intracellular Ca2+-release channel function. Biochem. J. 337 (Pt 3), 345–361.PubMedCrossRefGoogle Scholar
  33. 33.
    Ango F., Robbe D., Tu J.C., Xiao B., Worley P.F., Pin J.P., et al. (2002) Homer-dependent cell surface expression of metabotropic glutamate receptor type 5 in neurons. Mol. Cell. Neurosci. 20, 323–329.PubMedCrossRefGoogle Scholar
  34. 34.
    Tu J.C., Xiao B., Naisbitt S., Yuan J.P., Petralia R.S., Brakeman P., et al. (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23, 583–592.PubMedCrossRefGoogle Scholar
  35. 35.
    Feng W., Tu J., Yang T., Vernon P.S., Allen P.D., Worley P.F., et al. (2002) Homer regulates gain of ryanodine receptor type 1 channel complex. J. Biol. Chem. 277, 44,722–44,730.Google Scholar
  36. 36.
    Hwang S.-Y., Wei J., Westhoff J.H., Duncan R.S., Ozawa F., Volpe P., et al. (2003) Differential functional interaction of two Ves1/Homer protein isoforms with ryanodine receptor type 1: a novel mechanism for control of intracellular calcium signaling. Cell Calcium 34, 177–184.PubMedCrossRefGoogle Scholar
  37. 37.
    Westhoff J.H., Hwang S.-Y., Duncan R.S., Ozawa F., Volpe P., Inokuchi K., et al. (2003) Ves1/Homer proteins regulate ryanodine receptor type 2 function and intracellular calcium signaling. Cell Calcium 34, 261–269.PubMedCrossRefGoogle Scholar
  38. 38.
    Yuan J.P., Kiselyov K., Shin D.M., Chen J., Shcheynikov N., Kang S.H., et al. (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114, 777–789.PubMedCrossRefGoogle Scholar
  39. 39.
    Montell C., Birnbaumer L., and Flockerzi V. (2003) The TRP channels, a remarkably functional family. Cell 108, 595–598.CrossRefGoogle Scholar
  40. 40.
    McNiven M.A., Cao H., Pitts K.R., and Yoon Y. (2000) The dynamin family. Trends Biochem. Sci. 25, 115–120.PubMedCrossRefGoogle Scholar
  41. 41.
    Gray N.W., Fourgeaud L., Huang B., Chen J., Cao H., Oswald B., et al. (2003) Dynamin 3 is a component of the postsynapse, where it interacts with mGluR5 and Homer. Curr. Biol. 13, 510–515.PubMedCrossRefGoogle Scholar
  42. 42.
    Minakami R., Kato A., and Sugiyama H. (2000) Interaction of Vesl-1L/Homer 1c with synatxin 13. Biochem. Biophys. Res. Commun. 272, 466–471.PubMedCrossRefGoogle Scholar
  43. 43.
    Kammermeier P.J., Xiao B., Tu J.C., Worley P.F., and Ikeda S.R. (2000) Homer proteins regulate coupling of group I metabotropic gluamate receptors to N-type calcium and M-type potassium channels. J. Neurosci. 20, 7238–7245.PubMedGoogle Scholar
  44. 44.
    Herlitze S., Garcia D.E., Mackie K., Hille B., Scheuer T., and Catterall W.A. (1996) Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature 380, 258–262.PubMedCrossRefGoogle Scholar
  45. 45.
    Charpak S., Gähwiler B.H., Do K.Q., and Knöpfel T. (1990) Potassium conductances in hippocampal neurons blocked by excitatory amino-acid neurotransmitters. Nature 347, 765–767.PubMedCrossRefGoogle Scholar
  46. 46.
    Ango F., Prézeau L., Muller T., Tu J.C., Xiao B., Worley P.F., et al. (2001) Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 411, 962–965.PubMedCrossRefGoogle Scholar
  47. 47.
    Foa L., Rajan I., Haas K., Wu G.-Y., Brakeman P., Worley P., et al. (2001) The scaffold protein, Homer1b/c, regulates axon pathfinding in the central nervous system in vivo. Nat. Neurosci. 4, 499–506.PubMedGoogle Scholar
  48. 48.
    Sergé A., Fourgeaud L., Hémar A., and Choquet D. (2003) Receptor activation and Homer differentially control the lateral mobility of metabotropic glutamate receptor 5 in the neuronal membrane. J. Neurosci. 22, 3910–3920.Google Scholar
  49. 49.
    Kamyshev N.G., Iliadi K.G., and Bragina J.V. (1999) Drosophila conditioned courtship: two ways of testing memory. Learn. Mem. 6, 1–20.PubMedGoogle Scholar
  50. 50.
    Swanson C.J., Baker D.A., Carson D., Worley P.F., and Kalivas P.W. (2001) Repeated cocaine administration attenuates group 1 metabotropic glutamate receptor-mediated glutamate release and behavioral activation: a potential role for Homer. J. Neurosci. 21, 9043–9052.PubMedGoogle Scholar
  51. 51.
    Ehrengruber M.U. (2002) Alphaviral vectors for gene transfer into neurons. Mol. Neurobiol. 26, 183–201.PubMedCrossRefGoogle Scholar
  52. 52.
    Ehrengruber M.U. (2002) Alphaviral gene transfer in neurobiology. Brain Res. Bull. 59, 13–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Hennou S., Kato A., Schneider E.M., Lundstrom K., Gähwiler B.H., Inokuchi K., et al. (2003) Homer-1a/Vesl-1S enhances hippocampal synaptic transmission. Eur. J. Neurosci. 18, 811–819.PubMedCrossRefGoogle Scholar
  54. 54.
    Sala C., Futai K., Yamamoto K., Worley P.F., Hayashi Y., and Sheng M. (2003) Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a. J. Neurosci. 23, 6327–6337.PubMedGoogle Scholar
  55. 55.
    Ghasemzadeh M.B., Permenter L.K., Lake R., Worley P.F., and Kalivas P.W. (2003) Homer1 proteins and AMPA receptors modulate cocaine-induced behavioural plasticity. Eur. J. Neurosci. 18, 1645–1651.PubMedCrossRefGoogle Scholar
  56. 56.
    Morioka R., Kato A., Fueta Y., and Sugiyama H. (2001) Expression of vesl-1S/homer-1a, a gene associated with long-term potentiation, in the brain of the epileptic E1 mouse. Neurosci. Lett. 313, 99–101.PubMedCrossRefGoogle Scholar
  57. 57.
    Park H.T., Kang E.K., and Bae K.W. (1997) Light regulates Homer mRNA expression in the rat suprachiasmatic nucleus. Mol. Brain Res. 52, 318–322.PubMedCrossRefGoogle Scholar
  58. 58.
    Nielsen H.S., Georg B., Hannibal J., and Fahrenkrug J. (2002) Homer-1 mRNA in the rat suprachiasmatic nucleus is regulated differentially by the retinohypothalamic tract transmitters pituitary adenylate cyclase activating polypeptide and glutamate at time points where light phase-shifts the endogenous rhythm. Brain Res. Mol. Brain Res. 105, 79–85.PubMedCrossRefGoogle Scholar
  59. 59.
    Vazdarjanova A., McNaughton B.L., Barnes C.A., Worley P.F., and Guzowski J.F. (2002) Experience-dependent coincident expression of the effector immediate-early genes arc and Homer 1a in hippocampal and neocortical neuronal networks. J. Neurosci. 22, 10,067–10,071.Google Scholar
  60. 60.
    Polese D., de Serpis A.A., Ambesi-Impiombato A., Muscettola G., and de Bartolomeis A. (2002) Homer 1a gene expression modulation by antipsychotic drugs: involvement of the glutamate metabotropic system and effects of D-cycloserine. Neuropsychopharmacology 27, 906–913.PubMedCrossRefGoogle Scholar
  61. 61.
    de Bartolomeis A., Aloj L., Ambesi-Impiombato A., Bravi D., Caracò C., Muscettola G., et al. (2002) Acute administration of antipsychotics modulates Homer striatal gene expression differentially. Brain Res. Mol. Brain Res. 98, 124–129.PubMedCrossRefGoogle Scholar
  62. 62.
    Ageta H., Kato A., Hatakeyama S., Nakayama K., Isojima Y., and Sugiyama H. (2001) Regulation of the level of Vesl-1S/Homer-1a proteins by ubiquitin-proteasome proteolytic systems. J. Biol. Chem. 276, 15,893–15,897.CrossRefGoogle Scholar
  63. 63.
    Ageta H., Kato A., Fukazawa Y., Inokuchi K., and Sugiyama H. (2001) Effects of proteasome inhibitors on the synaptic localization of Vesl-1S/Homer-1a proteins. Mol. Brain Res. 97, 187–189.CrossRefGoogle Scholar
  64. 64.
    Sato M., Suzuki K., and Nakanishi S. (2001) NMDA receptor stimulation and brain-derived neurotrophic factor upregulate homer 1a mRNA via the mitogen-activated protein kinase cascade in cultured cerebellar granule cells. J. Neurosci. 21, 3797–3805.PubMedGoogle Scholar
  65. 65.
    Thomas U. (2002) Modulation of synaptic signalling complexes by Homer proteins. J. Neurochem. 81, 407–413.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Markus U. Ehrengruber
    • 1
    • 2
  • Akihiko Kato
    • 3
  • Kaoru Inokuchi
    • 4
  • Sonia Hennou
    • 2
  1. 1.Kantonsschule Hohe PromenadeZurichSwitzerland
  2. 2.Brain Research InstituteUniversity of ZurichZurichSwitzerland
  3. 3.Department of PhysiologyUniversity of CaliforniaSan Francisco
  4. 4.Mitsubishi Kagaku Institute of Life Sciences (MITILS)TokyoJapan

Personalised recommendations