Molecular Neurobiology

, Volume 29, Issue 1, pp 61–71 | Cite as

Ion channels and amino acid transporters support the growth and invasion of primary brain tumors

  • Harald Sontheimer


The malignant growth of glial support cells causes gliomas, highly invasive, primary brain tumors that are largely resistant to therapy. Individual tumor cells spread by active cell migration, invading diffusely into the normal brain. This process is facilitated by Cl channels that endow glioma cells with an enhanced ability to quickly adjust their shape and cell volume to fit the narrow and tortuous extracellular brain spaces. Once satellite tumors enlarge, their growth is limited by the spatial constraints imposed by the bony cavity of the skull and spinal column. Glioma cells circumvent this limitation by active destruction of peritumoral neural tissue through the release of glutamate, inducing peritumoral seizures and ultimately excitotoxic neuronal cell death. Hence, primary brain tumors support their unusual biology by taking advantage of ion channels and transporters that are designed to support ion homeostatic functions in normal brain.

Index Entries

Glioma glutamate excitotoxicity chloride cell migration invasion metastasis cell volume ion channel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reier P. J. (1986) Gliosis following CNS injury: The anatomy of astrocytic scars and their influences on axonal elongation, in Astrocytes, Cell Biology and Pathology of Astrocytes, eds., Fedoroff, S. and Vernadakis A., Academic Press, Orlando, pp. 263–324.Google Scholar
  2. 2.
    Ridet J. L., Malhotra S. K., Privat A., and Gage F. H. (1997) Reactive astrocytes: cellular and molecular cues to biological function. TINS 20, 570–577.PubMedGoogle Scholar
  3. 3.
    Unger J. W. (1998) Glial reaction in aging and Alzheimer’s disease. Microsc. Res. Tech. 43, 24–28.PubMedCrossRefGoogle Scholar
  4. 4.
    Collins V. P. (2002) Cellular mechanisms targeted during astrocytoma progression. Cancer Lett. 188, 1–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Von Deimling A., Louis D. N., and Wiestler O. D. (1995) Molecular pathways in the formation of gliomas. Glia 15, 328–338.CrossRefGoogle Scholar
  6. 6.
    Tang P., Steck P. A., and Yung W. K. A. (1997) The autocrine loop of TGF-α/EGFR and brain tumors. J. Neurooncol. 35, 303–314.PubMedCrossRefGoogle Scholar
  7. 7.
    Maher E. A., Furnari F. B., Bachoo R. M., Rowitch D. H., Louis D. N., Cavenee W. K., and DePinho R. A. (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev. 15, 1311–1333.PubMedCrossRefGoogle Scholar
  8. 8.
    Holland E. C., Hively W. P., DePinho R. A., and Varmus H. E. (1998) A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev. 12, 3675–3685.PubMedGoogle Scholar
  9. 9.
    Forsyth P. A., Wong H., Laing T. D., et al. (1999) Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br. J. Cancer 79, 1828–1835.PubMedCrossRefGoogle Scholar
  10. 10.
    Gary S. C., Kelly G. M., and Hockfield S. (1998) BEHAB/brevican: A brain-specific lectican implicated in gliomas and glial cell motility. Curr. Opin. Neurobiol. 8, 576–581.PubMedCrossRefGoogle Scholar
  11. 11.
    Thorsen F. and Tysnes B. B. (1997) Brain tumor cell invasion, anatomical and biological considerations. Anticancer Research 17, 4121–4126.PubMedGoogle Scholar
  12. 12.
    Laerum O. D., Bjerkvig R., Steinsvag S. K., and de Ridder L. (1984) Invasiveness of primary brain tumors. Cancer Metastasis Reviews 3, 223–236.PubMedCrossRefGoogle Scholar
  13. 13.
    Giese A., Rief M. D., Loo M. A., and Berens M. E. (1994) Determinants of human astrocytoma migration. Cancer Res. 54, 3897–3904.PubMedGoogle Scholar
  14. 14.
    Manning T. J., Jr., Parker J. C., and Sontheimer H. (2000) Role of lysophosphatidic acid and rho in glioma cell motility. Cell Motil Cytoskeleton 45, 185–199.PubMedCrossRefGoogle Scholar
  15. 15.
    Vargova L., Homola A., Zamecnik J., Tichy M., Benes V., and Sykova E. (2003) Diffusion parameters of the extracellular space in human gliomas. Glia 42, 77–88.PubMedCrossRefGoogle Scholar
  16. 16.
    Soroceanu L., Manning T. J., Jr., and Sontheimer H. (1999) Modulation of glioma cell migration and invasion using Cl and K+ ion channel blockers. J. Neurosci. 19, 5942–5954.PubMedGoogle Scholar
  17. 17.
    Takano T., Lin J. H., Arcuino G., Gao Q., Yang J., and Nedergaard M. (2001) Glutamate release promotes growth of malignant gliomas. Nat. Med. 7, 1010–1015.PubMedCrossRefGoogle Scholar
  18. 18.
    Ye Z. C. and Sontheimer H. (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res. 59, 4383–4391.PubMedGoogle Scholar
  19. 19.
    Choi D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634.PubMedCrossRefGoogle Scholar
  20. 20.
    Rothstein J. D. (1996) Excitotoxicity hypothesis. Neurology 47, S19–25.PubMedGoogle Scholar
  21. 21.
    Ransom C. B., O’Neal J. T., and Sontheimer H. (2001) Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells. J. Neurosci. 21, 7674–7683.PubMedGoogle Scholar
  22. 22.
    Jentsch T. J., Friedrich T., Schriever A., and Yamada H. (1999) The CLC chloride channel family. Pflügers Arch. 437, 783–795.PubMedCrossRefGoogle Scholar
  23. 23.
    Jentsch T. J., Stein V., Weinreich F., and Zdebik A. A. (2002) Molecular structure and physiological function of chloride channels. Physiol. Rev. 82, 503–568.PubMedGoogle Scholar
  24. 24.
    Olsen M. L., Schade S., Lyons S. A., Amarillo M. D., and Sontheimer H. (2003) Expression of voltage-gated chloride channels in human glioma cells. J. Neurosci. 2, 5572–5582.Google Scholar
  25. 25.
    Greger R. (1990) Chloride channel blockers. Methods in Enzymology 191, 793–810.PubMedCrossRefGoogle Scholar
  26. 26.
    DeBin J. A., Maggio J. E., and Strichartz G. R. (1993) Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol. 264, C361–369.PubMedGoogle Scholar
  27. 27.
    Ullrich N. and Sontheimer H. (1996) Biophysical and pharmacological characterization of chloride currents in human astrocytoma cells. Am. J. Physiol. 270, C1511-C1521.PubMedGoogle Scholar
  28. 28.
    Lyons S. A., O’Neal J, and Sontheimer H. (2002) Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 39, 162–173.PubMedCrossRefGoogle Scholar
  29. 29.
    (2002) TransMolecular receives FDA approval for 131-I-TM-601 IND application. Expert Rev. Anticancer Ther. 2, p. 139.Google Scholar
  30. 30.
    Dalton S., Gerzanich V., Chen M., Dong Y., Shuba Y., and Simard J. M. (2003) Chlorotoxinsensitive Ca2+-activated Cl channel in type R2 reactive astrocytes from adult rat brain. Glia 42, 325–339.PubMedCrossRefGoogle Scholar
  31. 31.
    Ullrich N., Bordey A., Gillespie G. Y., and Sontheimer H. (1998) Expression of voltage-activated chloride currents in acute slices of human gliomas. Neurosci. 83, 1161–1173.CrossRefGoogle Scholar
  32. 32.
    Deshane J., Garner C. C., and Sontheimer H. (2003) Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J. Biol. Chem. 278, 4135–4144.PubMedCrossRefGoogle Scholar
  33. 33.
    Duszyk M., Shu Y., Sawicki G., Radomski A., Man S. F., and Radomski M. W. (1999) Inhibition of matrix metalloproteinase MMP-2 activates chloride current in human airway epithelial cells. Can. J. Physiol. Pharmacol. 77, 529–535.PubMedCrossRefGoogle Scholar
  34. 34.
    Amberger V. R., Avellana-Adalid V., Hensel T., Baron-Van Evercooren A., and Schwab M. E. (1997) Oligodendrocyte-type 2 astrocyte progenitors use a metalloendoprotease to spread and migrate on CNS myelin. Europ. J. Neurosci. 9, 151–162.CrossRefGoogle Scholar
  35. 35.
    Levison S. W., Chuang C., Abramson B. J., and Goldman J. E. (1993) The migrational patterns and developmental fates of glial precursors in the rat subventricular zone are temporally regulated. Dev. 119, 611–622.Google Scholar
  36. 36.
    Simpson P. B. and Armstrong R. C. (1999) Intracellular signals and cytoskeletal elements involved in oligodendrocyte progenitor migration. Glia 26, 22–35.PubMedCrossRefGoogle Scholar
  37. 37.
    Noble M. and Mayer-Pröschel M. (1997) Growth factors, glia and gliomas. J. Neurooncol. 35, 193–209.PubMedCrossRefGoogle Scholar
  38. 38.
    Andersen P., Dingledine R., Gjerstad L., Langmoen I. A., and Laursen A. M. (1980) Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric acid. J. Physiol. 305, 279–296.PubMedGoogle Scholar
  39. 39.
    LoTurco J. J., Owens D. F., Heath M. J. S., Davis M. B. E., and Kriegstein A. R. (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298.PubMedCrossRefGoogle Scholar
  40. 40.
    Hammoud M. A., Sawaya R., Shi W., Thall P. F., and Leeds N. E. (1996) Prognostic significance of preoperative MRI scans in glioblastoma multiforme. J. Neurooncol. 27, 65–73.PubMedCrossRefGoogle Scholar
  41. 41.
    Danbolt N. C. (2001) Glutamate uptake. Prog. Neurobiol. 65, 1–105.PubMedCrossRefGoogle Scholar
  42. 42.
    Ye Z. C., Rothstein J. D., and Sontheimer H. (1999) Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J. Neurosci. 19, 10,767–10,777.Google Scholar
  43. 43.
    Rossi D. J., Oshima T., and Attwell D. (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403, 316–321.PubMedCrossRefGoogle Scholar
  44. 44.
    Sato H., Tamba M., Ishii T., and Bannai S. (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J. Biol. Chem. 274, 11,455–11,458.Google Scholar
  45. 45.
    Tang P., Steck P. A., and Yung W. K. (1997) The autocrine loop of TGF-alpha/EGFR and brain tumors. J. Neurooncol. 35, 303–314.PubMedCrossRefGoogle Scholar
  46. 46.
    Iida M., Sunaga S., Hirota N., Kuribayashi N., Sakagami H., Takeda M., and Matsumoto K. (1997) Effect of glutathione-modulating compounds on hydrogen-peroxide-induced cytotoxicity in human glioblastoma and glioma cell lines. J. Cancer Res. Clin. Oncol. 123, 619–622.PubMedCrossRefGoogle Scholar
  47. 47.
    Gochenauer G. E. and Robinson M. B. (2001) Dibutyryl-cAMP (dbcAMP) up-regulates astrocytic chloride-dependent l-[3H]glutamate transport and expression of both system xc(−) subunits. J. Neurochem. 78, 276–286.PubMedCrossRefGoogle Scholar
  48. 48.
    Oberndorfer S., Schmal T., Lahrmann H., Urbanits S., Lindner K., and Grisold W. (2002) The frequency of seizures in patients with primary brain tumors or cerebral metastases. Wien Klin. Wochenschr. 114, 911–916.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Harald Sontheimer
    • 1
  1. 1.Department of Neurobiology and Civitan International Research Centerthe University of Alabama at BirminghamBirmingham

Personalised recommendations