Molecular Neurobiology

, Volume 26, Issue 1, pp 21–44 | Cite as

Functional diversity in neuronal voltage-gated calcium channels by alternative splicing of Cavα1

  • Diane Lipscombe
  • Jennifer Qian Pan
  • Annette C. Gray


Alternative splicing is a critical mechanism used extensively in the mammalian nervous system to increase the level of diversity that can be achieved by a set of genes. This review focuses on recent studies of voltage-gated calcium (Ca) channel Cavα1 subunit splice isoforms in neurons. Voltage-gated Ca channels couple changes in neuronal activity to rapid changes in intracellular Ca levels that in turn regulate an astounding range of cellular processes. Only ten genes have been identified that encode Cavα1 subunits, an insufficient number to account for the level of functional diversity among voltage-gated Ca channels. The consequences of regulated alternative splicing among the genes that comprise voltage-gated Ca channels permits specialization of channel function, optimizing Ca signaling in different regions of the brain and in different cellular compartments. Although the full extent of alternative splicing is not yet known for any of the major subtypes of voltage-gated Ca channels, it is already clear that it adds a rich layer of structural and functional diversity”.

Index Entries

Alternative splicing calcium channels human genome isoforms calcium signaling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burgess D. L. and Noebels J. L. (1999) Voltage-dependent calcium channel mutations in neurological disease. Ann. NY Acad. Sci. 868, 199–212.PubMedCrossRefGoogle Scholar
  2. 2.
    Miller R. J. (2001) Rocking and rolling with Ca(2+) channels. Trends Neurosci. 24, 445–449PubMedCrossRefGoogle Scholar
  3. 3.
    Pietrobon D. (2002) Calcium channels and channelopathies of the central nervous system. Mol. Neurobiol. 25, 31–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Dunlap K., Luebke J. I., and Turner T. J. (1995) Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci. 18, 89–98.PubMedCrossRefGoogle Scholar
  5. 5.
    Komuro H. and Rakic P. (1998) Orchestration of neuronal migration by activity of ion channels, neurotransmitter receptors, and intracellular Ca2+ fluctuations. J. Neurobiol. 37, 110–130PubMedCrossRefGoogle Scholar
  6. 6.
    Finkbeiner S. and Greenberg M. E. (1998) Ca2+ channel-regulated neuronal gene expression. J. Neurobiol. 37, 171–189.PubMedCrossRefGoogle Scholar
  7. 7.
    Walker D. and De Waard M. (1998) Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function. Trends Neurosci. 21, 148–154.PubMedCrossRefGoogle Scholar
  8. 8.
    Klugbauer N., Lacinova L., Marais E., Hobom M., and Hofmann F. (1999) Molecular diversity of the calcium channel alpha2delta subunit. J. Neurosci. 19, 684–691.PubMedGoogle Scholar
  9. 9.
    Birnbaumer L., Qin N., Olcese R., Tareilus E., Platano D., Costantin J., et al. (1998) Structures and functions of calcium channel beta subunits. J. Bioenerg. Biomembr. 30, 357–375.PubMedCrossRefGoogle Scholar
  10. 10.
    Angelotti T. and Hofmann F. (1996) Tissuespecific expression of splice variants of the mouse voltage-gated calcium channel alpha2/delta subunit. FEBS Lett. 397, 331–337.PubMedCrossRefGoogle Scholar
  11. 11.
    Helton T. D. and Horne W. A. (2002) Alternative splicing of the beta 4 subunit has alphal subunit subtype-specific effects on Ca2+ channel gating. J. Neurosci. 22, 1573–1582.PubMedGoogle Scholar
  12. 12.
    Burgess D. L., Gefrides L. A., Foreman P. J., and Noebels J. L. (2001) A cluster of three novel Ca2+ channel gamma subunit genes on chromosome 19ql3.4: evolution and expression profile of the gamma subunit gene family. Genomics 71, 339–350.PubMedCrossRefGoogle Scholar
  13. 13.
    Takahashi M., Seagar M. J., Jones J. F., Reber B. F., and Catterall W. A. (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc. Natl. Acad. Sci. USA 84, 5478–5482.PubMedCrossRefGoogle Scholar
  14. 14.
    Sharp A. H., Imagawa T., Leung A. T., and Campbell K. P. (1987) Identification and characterization of the dihydropyridine-binding subunit of the skeletal muscle dihydropyridine receptor. J. Biol. Chem. 262, 12309–12315.PubMedGoogle Scholar
  15. 15.
    Chen L., Chetkovich D. M., Petralia R. S., Sweeney N. T., Kawasaki Y., Wenthold R. J., et al. (2000) Stargazing regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature. 408, 936–943.PubMedCrossRefGoogle Scholar
  16. 16.
    Xu W. and Lipscombe D. (2001) Neuronal Ca(V)1.3alpha(l) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J. Neurosci. 21, 5944–5951.PubMedGoogle Scholar
  17. 17.
    Platzer J., Engel J., Schrott-Fischer A., Stephan K., Bova S., Chen H., et al. (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell. 102, 89–97.PubMedCrossRefGoogle Scholar
  18. 18.
    Koschak A., Reimer D., Huber I., Grabner M., Glossmann H., Engel J., et al. (2001) alpha 1D (Cav1.3) subunits can form L-type Ca2+ channels activating at negative voltages. J. Biol. Chem. 276, 22100–22106.PubMedCrossRefGoogle Scholar
  19. 19.
    Littleton J. T. and Ganetzky B. (2000) Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron. 26, 35–43.PubMedCrossRefGoogle Scholar
  20. 20.
    Ertel E. A., Campbell K. P., Harpold M. M., Hofmann F., Mori Y., Perez-Reyes E., et al. (2000) Nomenclature of voltage-gated calcium channels. Neuron. 25, 533–535.PubMedCrossRefGoogle Scholar
  21. 21.
    Bean B. P. (1989) Classes of calcium channels in vertebrate cells. Annu Rev. Physiol. 51, 367–384.PubMedCrossRefGoogle Scholar
  22. 22.
    Mori Y., Niidome T., Fujita Y., Mynlieff M., Dirksen R. T., Beam K. G., et al. (1993) Molecular diversity of voltage-dependent calcium channel. Ann. NY Acad. Sci. 707, 87–108.PubMedCrossRefGoogle Scholar
  23. 23.
    Bal T. and McCormick D. A. (1993) Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. J. Physiol. 468, 669–691.PubMedGoogle Scholar
  24. 24.
    Perez-Reyes E. (1998) Molecular characterization of a novel family of low voltage-activated, T-type, calcium channels. J. Bioenerg. Biomembr. 30, 313–318.PubMedCrossRefGoogle Scholar
  25. 25.
    Kollmar R., Montgomery L. G., Fak J., Henry L. J., and Hudspeth A. J. (1997) Predominance of the alphalD subunit in L-type voltage-gated Ca2+ channels of hair cells in the chicken’s cochlea. Proc. Natl. Acad. Sci. USA 94, 14883–14888.PubMedCrossRefGoogle Scholar
  26. 26.
    Ghosh A. and Greenberg M. E. (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268, 239–247.PubMedCrossRefGoogle Scholar
  27. 27.
    Sutton K. G., McRory J. E., Guthrie H., Murphy T. H., and Snutch T. P. (1999) P/Q-type calcium channels mediate the activity-dependent feedback of syntaxin-1A. Nature 401, 800–804.PubMedCrossRefGoogle Scholar
  28. 28.
    Schorge S., Gupta S., Lin Z., McEnery M. W., and Lipscombe D. (1999) Calcium channel activation stabilizes a neuronal calcium channel mRNA. Nat. Neurosci. 2, 785–790.PubMedCrossRefGoogle Scholar
  29. 29.
    Komuro H. and Rakic P. (1992) Selective role of N-type calcium channels in neuronal migration. Science 257, 806–809.PubMedCrossRefGoogle Scholar
  30. 30.
    Mintz I. M., Sabatini B. L., and Regehr W. G. (1995) Calcium control of transmitter release at a cerebellar synapse. Neuron 15, 675–688.PubMedCrossRefGoogle Scholar
  31. 31.
    McRory J. E., et al. (2001) Molecular and functional characterization of a family of rat brain T-type calcium channels. J. Biol. Chem. 276, 3999–4011.PubMedCrossRefGoogle Scholar
  32. 32.
    Cahill A. L., Hurley J. H., and Fox A. P. (2000) Coexpression of cloned alpha(1B), beta(2a), and alpha(2)/delta subunits produces non-inactivating calcium currents similar to those found in bovine chromaffin cells. J. Neurosci. 20, 1685–1693.PubMedGoogle Scholar
  33. 33.
    Mermelstein P. G., Foehring R. C., Tkatch T., Song W. J., Baranauskas G., and Surmeier D. J. (1999) Properties of Q-type calcium channels in neostriatal and cortical neurons are correlated with beta subunit expression. J. Neurosci. 19, 7268–7277.PubMedGoogle Scholar
  34. 34.
    Vance C. L., Begg C. M., Lee W. L., Haase H., Copeland T. D., and McEnery M. W. (1998) Differential expression and association of calcium channel alphalB and beta subunits during rat brain ontogeny. J. Biol. Chem. 273, 14495–14502.PubMedCrossRefGoogle Scholar
  35. 35.
    Koch W. J., Ellinor P. T., and Schwartz A. (1990) cDNA cloning of a dihydropyridine-sensitive calcium channel from rat aorta. Evidence for the existence of alternatively spliced forms. J. Biol. Chem. 265, 17786–17791.PubMedGoogle Scholar
  36. 36.
    Snutch T. P., Tomlinson W. J., Leonard J. P., and Gilbert M. M. (1991) Distinct calcium channels are generated by alternative splicing and are differentially expressed in the mammalian CNS. Neuron 7, 45–57.PubMedCrossRefGoogle Scholar
  37. 37.
    Diebold R. J., Koch W. J., Ellinor P. T., Wang J. J., Muthuchamy M., Wieczorek D. F., et al. (1992) Mutually exclusive exon splicing of the cardiac calcium channel alpha 1 subunit gene generates developmentally regulated isoforms in the rat heart. Proc. Natl. Acad. Sci USA 89, 1497–501.PubMedCrossRefGoogle Scholar
  38. 38.
    Hui A., Ellinor P. T., Krizanova O., Wang J. J., Diebold R. J., and Schwartz A. (1991) Molecular cloning of multiple subtypes of a novel rat brain isoform of the alpha 1 subunit of the voltage-dependent calcium channel. Neuron 7, 35–44.PubMedCrossRefGoogle Scholar
  39. 39.
    Perez-Reyes E., Wei X. Y., Castellano A., and Birnbaumer L. (1990) Molecular diversity of L-type calcium channels. Evidence for alternative splicing of the transcripts of three non-allelic genes. J. Biol. Chem. 265, 20430–20436.PubMedGoogle Scholar
  40. 40.
    Soldatov N. M. (1992) Molecular diversity of L-type Ca2+ channel transcripts in human fibroblasts. Proc. Natl. Acad. Sci USA 89, 4628–4632.PubMedCrossRefGoogle Scholar
  41. 41.
    Williams M. E., Marubio L. M., Deal C. R., Hans M., Brust P. F., Philipson L. H., et al. (1994) Structure and functional characterization of neuronal alpha IE calcium channel subtypes. J. Biol. Chem. 269, 22347–22357.PubMedGoogle Scholar
  42. 42.
    Schneider T., Wei X., Olcese R., Costantin J. L., Neely A., Palade P., et al. (1994) Molecular analysis and functional expression of the human type E neuronal Ca2+ channel alpha 1 subunit. Receptors Channels 2, 255–270.PubMedGoogle Scholar
  43. 43.
    Marubio L. M., Roenfeld M., Dasgupta S., Miller R. J., and Philipson L. H. (1996) Isoform expression of the voltage-dependent calcium channel alpha 1E. Receptors Channels 4, 243–251.PubMedGoogle Scholar
  44. 44.
    Takimoto K., Li D., Nerbonne J. M., and Levitan E. S. (1997) Distribution, splicing and glucocorticoid-induced expression of cardiac alpha 1C and alpha ID voltage-gated Ca2+ channel mRNAs. J. Mol. Cell. Cardiol. 29, 3035–3042.PubMedCrossRefGoogle Scholar
  45. 45.
    Mittman S., Guo J., and Agnew W. S. (1999) Structure and alternative splicing of the gene encoding alphalG, a human brain T calcium channel alphal subunit. Neurosci. Lett. 274, 143–146.PubMedCrossRefGoogle Scholar
  46. 46.
    Mittman S., Guo J., Emerick M. C., and Agnew W. S. (1999) Structure and alternative splicing of the gene encoding alpha1l, a human brain T calcium channel alphal subunit. Neurosci. Lett. 269, 121–124.PubMedCrossRefGoogle Scholar
  47. 47.
    Monteil A., Chemin J., Bourinet E., Mennessier G., Lory P., and Nargeot J. (2000) Molecular and functional properties of the human alpha(lG) subunit that forms T-type calcium channels. J. Biol. Chem. 275, 6090–6100.PubMedCrossRefGoogle Scholar
  48. 48.
    Welling A., Ludwig A., Zimmer S., Klugbauer N., Flockerzi V., and Hofmann F. (1997) Alternatively spliced IS6 segments of the alpha 1C gene determine the tissue-specific dihydropyridine sensitivity of cardiac and vascular smooth muscle L-type Ca2+ channels. Circ. Res. 81, 526–532.PubMedGoogle Scholar
  49. 49.
    Lin Z., Haus S., Edgerton J., and Lipscombe D. (1997) Identification of functionally distinct isoforms of the N-type Ca2+ channel in rat sympathetic ganglia and brain. Neuron 18, 153–166.PubMedCrossRefGoogle Scholar
  50. 50.
    Pereverzev A., Klockner U., Henry M., Grabsch H., Vajna R., Olyschlager S., et al. (1998) Structural diversity of the voltage-dependent Ca2+ channel alpha1E-subunit. Eur. J. Neurosci. 10, 916–925.PubMedCrossRefGoogle Scholar
  51. 51.
    Tsunemi T., Saegusa H., Ishikawa K., Nagayama S., Murakoshi T., Mizusawa H., et al. (2002) Novel Cav2.1 splice variants isolated from Purkinje cells do not generate P-type Ca2+ current. J. Biol. Chem. 277, 7214–7221.PubMedCrossRefGoogle Scholar
  52. 52.
    Schramm M., Vajna R., Pereverzev A., Tottene A., Klockner U., Pietrobon D., et al. (1999) Isoforms of alphalE voltage-gated calcium channels in rat cerebellar granule cells: detection of major calcium channel alpha 1-transcripts by reverse transcription-polymerase chain reaction. Neuroscience 92, 565–575.PubMedCrossRefGoogle Scholar
  53. 53.
    Lin Z., Lin Y., Schorge S., Pan J. Q., Beierlein M., and Lipscombe D. (1999) Alternative splicing of a short cassette exon in alphalB generates functionally distinct N-type calcium channels in central and peripheral neurons. J. Neurosci. 19, 5322–5331.PubMedGoogle Scholar
  54. 54.
    Zuhlke R. D., Bouron A., Soldatov N. M., and Reuter H. (1998) Ca2+ channel sensitivity towards the blocker isradipine is affected by alternative splicing of the human alpha1C subunit gene. FEBS Lett. 427, 220–224.PubMedCrossRefGoogle Scholar
  55. 55.
    Bourinet E., Soong T. W., Sutton K., Slaymaker S., Mathews E., Monteil A., et al. (1999) Splicing of alpha 1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat. Neurosci. 2, 407–415.PubMedCrossRefGoogle Scholar
  56. 56.
    Krovetz H. S., Helton T. D., Crews A. L., and Horne W. A. (2000) C-Terminal alternative splicing changes the gating properties of a human spinal cord calcium channel alpha 1A subunit. J. Neurosci. 20, 7564–7570.PubMedGoogle Scholar
  57. 57.
    Pan J. Q. and Lipscombe D. (2000) Alternative splicing in the cytoplasmic II–III loop of the N-type Ca channel alpha IB subunit: functional differences are beta subunit-specific. J. Neurosci. 20, 4769–4775.PubMedGoogle Scholar
  58. 58.
    Hans M., Urrutia A., Deal C., Brust P. F., Stauderman K., Ellis S. B., et al. (1999) Structural elements in domain IV that influence biophysical and pharmacological properties of human alpha1A-containing high-voltage-activated calcium channels. Biophys. J. 76, 1384–1400.PubMedCrossRefGoogle Scholar
  59. 59.
    Chemin J., Monteil A., Bourinet E., Nargeot J., and Lory P. (2001) Alternatively spliced alpha(IG) (Ca(V)3.1) intracellular loops promote specific T-type Ca(2+) channel gating properties. Biophys. J. 80, 1238–1250.PubMedGoogle Scholar
  60. 60.
    Lacinova L., Klugbauer N., and Hofmann F. (2000) State-and isoform-dependent interaction of isradipine with the alphalC L-type calcium channel. Pflugers Arch. 440, 50–60.PubMedGoogle Scholar
  61. 61.
    Cribbs L. L., Gomora J. C., Daud A. N., Lee J. H., and Perez-Reyes E. (2000) Molecular cloning and functional expression of Ca(v)3.1c, a T-type calcium channel from human brain. FEBS Lett. 466, 54–58.PubMedCrossRefGoogle Scholar
  62. 62.
    Sakurai T., Hell J. W., Woppmann A., Miljanich G. P., and Catterall W. A. (1995) Immunochemical identification and differential phosphorylation of alternatively spliced forms of the alpha 1A subunit of brain calcium channels. J. Biol. Chem. 270, 21234–21242.PubMedCrossRefGoogle Scholar
  63. 63.
    Rettig J., Sheng Z. H., Kim D. K., Hodson C. D., Snutch T. P., and Catterall W. A. (1996) Isoform-specific interaction of the alpha1A subunits of brain Ca2+, channels with the presynaptic proteins syntaxin and SNAP-25. Proc. Natl. Acad. Sci. USA 93, 7363–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Sakurai T., Westenbroek R. E., Rettig J., Hell J., and Catterall W. A. (1996) Biochemical properties and subcellular distribution of the BI and rbA isoforms of alpha 1A subunits of brain calcium channels. J. Cell Biol. 134, 511–528.PubMedCrossRefGoogle Scholar
  65. 65.
    Kim D. K. and Catterall W. A. (1997) Ca2+-dependent and -independent interactions of the isoforms of the alphalA subunit of brain Ca2+ channels with presynaptic SNARE proteins. Proc. Natl. Acad. Sci. USA 94, 14782–14786.PubMedCrossRefGoogle Scholar
  66. 66.
    Simen A. A., Lee C. C., Simen B. B., Bindokas V. P., and Miller R. J. (2001) The C terminus of the Ca channel alphalB subunit mediates selective inhibition by G-protein-coupled receptors. J. Neurosci. 21, 7587–7597.PubMedGoogle Scholar
  67. 67.
    Kaneko S., Cooper C. B., Nishioka N., Yamasaki H., Suzuki A., Jarvis S. E., et al. (2002) Identification and characterization of novel human Ca(v)2.2 (alpha IB) calcium channel variants lacking the synaptic protein interaction site. J. Neurosci. 22, 82–92.PubMedGoogle Scholar
  68. 68.
    Soldatov N. M., Bouron A., and Reuter H. (1995) Different voltage-dependent inhibition by dihydropyridines of human Ca2+ channel splice variants. J. Biol. Chem. 270, 10540–10543.PubMedCrossRefGoogle Scholar
  69. 69.
    Jones S. W. and Marks T. N. (1989) Calcium currents in bullfrog sympathetic neurons. I. Activation kinetics and pharmacology. J. Gen. Physiol. 94, 151–167.PubMedCrossRefGoogle Scholar
  70. 70.
    Plummer M. R., Logothetis D. E., and Hess P. (1989) Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron 2, 1453–1463.PubMedCrossRefGoogle Scholar
  71. 71.
    Lipscombe D., Kongsamut S., and Tsien R. W. (1989) Alpha-adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating. Nature 340, 639–642.PubMedCrossRefGoogle Scholar
  72. 72.
    Plummer M. R. and Hess P. (1991) Reversible uncoupling of inactivation in N-type calcium channels. Nature 351, 657–659.PubMedCrossRefGoogle Scholar
  73. 73.
    Delcour A. H., Lipscombe D., and Tsien R. W. (1993) Multiple modes of N-type calcium channel activity distinguished by differences in gating kinetics. J. Neurosci. 13, 181–194.PubMedGoogle Scholar
  74. 74.
    Cox D. H. and Dunlap K. (1994) Inactivation of N-type calcium current in chick sensory neurons: calcium and voltage dependence. J. Gen. Physiol. 104, 311–336.PubMedCrossRefGoogle Scholar
  75. 75.
    Rittenhouse A. R. and Hess P. (1994) Microscopic heterogeneity in unitary N-type calcium currents in rat sympathetic neurons. J. Physiol. 474, 87–99.PubMedGoogle Scholar
  76. 76.
    Delmas P., Abogadie F. C., Buckley N. J., and Brown D. A. (2000) Calcium channel gating and modulation by transmitters depend on cellular compartmentalization. Nat. Neurosci. 3, 670–678.PubMedCrossRefGoogle Scholar
  77. 77.
    Sharp P. A. and Burge C. B. (1997) Classification of introns: U2-type or U12-type. Cell 91, 875–879.PubMedCrossRefGoogle Scholar
  78. 78.
    Modrek B. and Lee C. (2002) A genomic view of alternative splicing. Nat. Genet. 30, 13–19.PubMedCrossRefGoogle Scholar
  79. 79.
    Smith C. W. and Valcarcel J. (2000) Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381–388.PubMedCrossRefGoogle Scholar
  80. 80.
    Black D. L. (2000) Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103, 367–370.PubMedCrossRefGoogle Scholar
  81. 81.
    Xie J. and Black D. L. (2001) A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410, 936–939.PubMedCrossRefGoogle Scholar
  82. 82.
    Grabowski P. J. (1998) Splicing regulation in neurons: tinkering with cell-specific control. Cell 92, 709–712.PubMedCrossRefGoogle Scholar
  83. 83.
    Black D. L. (1998) Splicing in the inner ear: a familiar tune, but what are the instruments? Neuron 20, 165–168.PubMedCrossRefGoogle Scholar
  84. 84.
    Schmucker D., Clemens J. C., Shu H., Worby C. A., Xiao J., Muda M., et al. (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671–684.PubMedCrossRefGoogle Scholar
  85. 85.
    Reenan R. A. (2001) The RNA world meets behavior: A→1 pre-mRNA editing in animals. Trends Genet. 17, 53–56.PubMedCrossRefGoogle Scholar
  86. 86.
    Sommer B., Kohler M., Sprengel R., and Seeburg P. H. (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19.PubMedCrossRefGoogle Scholar
  87. 87.
    Baker B. S. (1989) Sex in flies: the splice of life. Nature. 340, 521–524.PubMedCrossRefGoogle Scholar
  88. 88.
    McKeown M. (1992) Alternative mRNA splicing. Annu. Rev. Cell Biol. 8, 133–155.PubMedCrossRefGoogle Scholar
  89. 89.
    Amara S. G., Jonas V., Rosenfeld M. G., Ong E. S., and Evans R. M. (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298, 240–244.PubMedCrossRefGoogle Scholar
  90. 90.
    Navaratnam D. S., Bell T. J., Tu T. D., Cohen E. L., and Oberholtzer J. C. (1997) Differential distribution of Ca2+-activated K+ channel splice variants among hair cells along the tonotopic axis of the chick cochlea. Neuron 19, 1077–1085.PubMedCrossRefGoogle Scholar
  91. 91.
    Rosenblatt K. P., Sun Z. P., Heller S., and Hudspeth A. J. (1997) Distribution of Ca2+-activated K + channel isoforms along the tonotopic gradient of the chicken’s cochlea. Neuron 19, 1061–1075.PubMedCrossRefGoogle Scholar
  92. 92.
    Jensen K. B., Dredge B. K., Stefani G., Zhong R., Buckanovich R. J., Okano H. J., et al. (2000) Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron. 25, 359–371.PubMedCrossRefGoogle Scholar
  93. 93.
    Maximov A., Sudhof T. C., and Bezprozvanny I. (1999) Association of neuronal calcium channels with modular adaptor proteins. J. Biol. Chem. 274, 24453–24456.PubMedCrossRefGoogle Scholar
  94. 94.
    Lu Q., AtKisson M. S., Jarvis S. E., Feng Z. P., Zamponi G. W., and Dunlap K. (2001) Syntaxin 1 A supports voltage-dependent inhibition of alpha1B Ca2+ channels by Gbetagamma in chick sensory neurons. J. Neurosci. 21, 2949–2957.PubMedGoogle Scholar
  95. 95.
    Ghasemzadeh M. B., Pierce R. C., and Kalivas P. W. (1999) The monoamine neurons of the rat brain preferentially express a splice variant of alphalB subunit of the N-type calcium channel. J. Neurochem. 73, 1718–1723.PubMedCrossRefGoogle Scholar
  96. 96.
    Raghib A., Bertaso F., Davies A., Page K. M., Meir A., Bogdanov Y., et al. (2001) Dominant-negative synthesis suppression of voltage-gated calcium channel Cav2.2 induced by truncated constructs. J. Neurosci. 21, 8495–8504.PubMedGoogle Scholar
  97. 97.
    Lu Q. and Dunlap K. (1999) Cloning and functional expression of novel N-type Ca(2+) channel variants. J. Biol. Chem. 274, 34566–34575.PubMedCrossRefGoogle Scholar
  98. 98.
    Klockner U., Mikala G., Eisfeld J., Iles D. E., Strobeck M., Mershon J. L., et al. (1997) Properties of three COOH-terminal splice variants of a human cardiac L-type Ca2+-channel alphal-subunit. Am. J. Physiol. 272, H1372-H1381.PubMedGoogle Scholar
  99. 99.
    Soldatov N. M., Oz M., O’Brien K. A., Abernethy D. R., and Morad M. (1998) Molecular determinants of L-type Ca2+ channel inactivation. Segment exchange analysis of the carboxyl-terminal cytoplasmic motif encoded by exons 40–42 of the human alphalC subunit gene. J. Biol. Chem. 273, 957–963.PubMedCrossRefGoogle Scholar
  100. 100.
    Jagannathan S., Punt E. L., Gu Y., Arnoult C., Sakkas D., Barratt C. L., et al. (2002) Identification and localization of T-type voltage-operated calcium channel subunits in human male germ cells. Expression of multiple isoforms. J. Biol. Chem. 277, 8449–8456.PubMedCrossRefGoogle Scholar
  101. 101.
    Staes M., Talavera K., Klugbauer N., Prenen J., Lacinova L., Droogmans G., et al. (2001) The amino side of the C-terminus determines fast inactivation of the T-type calcium channel alphalG. J. Physiol. 530, 35–45.PubMedCrossRefGoogle Scholar
  102. 102.
    Zhuchenko O., Bailey J., Bonnen P., Ashizawa T., Stockton D. W., Amos C., et al. (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1 A- voltage-dependent calcium channel. Nat. Genet. 15, 62–69.PubMedCrossRefGoogle Scholar
  103. 103.
    Ligon B., Boyd A. E., 3rd, and Dunlap K. (1998) Class A calcium channel variants in pancreatic islets and their role in insulin secretion. J. Biol. Chem. 273, 13905–13911.PubMedCrossRefGoogle Scholar
  104. 104.
    Safa P., Boulter J., and Hales T. G. (2001) Functional properties of Cav1.3 (alpha1D) L-type Ca2+ channel splice variants expressed by rat brain and neuroendocrine GH3 cells. J. Biol. Chem. 276, 38727–38737.PubMedCrossRefGoogle Scholar
  105. 105.
    Ophoff R. A., Terwindt G. M., Vergouwe M. N., van Eijk R., Oefner P. J., Hoffman S. M., et al. (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87, 543–552.PubMedCrossRefGoogle Scholar
  106. 106.
    Nakai J., Adams B. A., Imoto K., and Beam K. G. (1994) Critical roles of the S3 segment and S3–S4 linker of repeat I in activation of L-type calcium channels. Proc. Natl. Acad. Sci. USA 91, 1014–1018.PubMedCrossRefGoogle Scholar
  107. 107.
    Mathur R., Zheng J., Yan Y., and Sigworth F. J. (1997) Role of the S3–S4 linker in Shaker potassium channel activation. J. Gen. Physiol. 109, 191–199.PubMedCrossRefGoogle Scholar
  108. 108.
    Tang C. Y. and Papazian D. M. (1997) Transfer of voltage independence from a rat olfactory channel to the Drosophila ether-a-go-go K+ channel. J. Gen. Physiol. 109, 301–311.PubMedCrossRefGoogle Scholar
  109. 109.
    Starr T. V., Prystay W., and Snutch T. P. (1991) Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc. Natl. Acad. Sci. USA 88, 5621–5625.PubMedCrossRefGoogle Scholar
  110. 110.
    Barry E. L., Gesek F. A., Froehner S. C., and Friedman P. A. (1995) Multiple calcium channel transcripts in rat osteosarcoma cells: selective activation of alpha ID isoform by parathyroid hormone. Proc. Natl. Acad. Sci. USA 92, 10914–10918.PubMedCrossRefGoogle Scholar
  111. 111.
    Ihara Y., Yamada Y., Fujii Y., Gonoi T., Yano H., Yasuda K., et al. (1995) Molecular diversity and functional characterization of voltage-dependent calcium channels (CACN4) expressed in pancreatic beta-cells. Mol. Endocrinol. 9, 121–130.PubMedCrossRefGoogle Scholar
  112. 112.
    Smith L. A., Peixoto A. A., Kramer E. M., Villella A., and Hall J. C. (1998) Courtship and visual defects of cacophony mutants reveal functional complexity of a calcium-channel alphal subunit in Drosophila. Genetics 149, 1407–1426.PubMedGoogle Scholar
  113. 113.
    Peixoto A. A., Smith L. A., and Hall J. C. (1997) Genomic organization and evolution of alternative exons in a Drosophila calcium channel gene. Genetics 145, 1003–1013.PubMedGoogle Scholar
  114. 114.
    Smith L. A., Wang X., Peixoto A. A., Neumann E. K., Hall L. M., and Hall J. C. (1996) A Drosophila calcium channel alphal subunit gene maps to a genetic locus associated with behavioral and visual defects. J. Neurosci. 16, 7868–7879.PubMedGoogle Scholar
  115. 115.
    Ellinor P. T., Zhang J. F., Horne W. A., and Tsien R. W. (1994) Structural determinants of the blockade of N-type calcium channels by a peptide neurotoxin. Nature 372, 272–275.PubMedCrossRefGoogle Scholar
  116. 116.
    Sather W. A., Tanabe T., Zhang J. F., Mori Y., Adams M. E., and Tsien R. W. (1993) Distinctive biophysical and pharmacological properties of class A (BI) calcium channel alpha 1 subunits. Neuron 11, 291–303.PubMedCrossRefGoogle Scholar
  117. 117.
    Stea A., Tomlinson W. J., Soong T. W., Bourinet E., Dubel S. J., Vincent S. R., et al. (1994) Localization and functional properties of a rat brain alpha 1A calcium channel reflect similarities to neuronal Q-and P-type channels. Proc. Natl. Acad. Sci. USA 91, 10576–10580.PubMedCrossRefGoogle Scholar
  118. 118.
    Randall A. and Tsien R. W. (1995) Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J. Neurosci. 15, 2995–3012.PubMedGoogle Scholar
  119. 119.
    Swartz K. J. and MacKinnon R. (1997) Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K+ channels. Neuron 18, 675–682.PubMedCrossRefGoogle Scholar
  120. 120.
    Rogers J. C., Qu Y., Tanada T. N., Scheuer T., and Catterall W. A. (1996) Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3–S4 extracellular loop in domain IV of the Na+ channel alpha subunit. J. Biol. Chem. 271, 15950–15962.PubMedCrossRefGoogle Scholar
  121. 121.
    Cestele S., Qu Y., Rogers J. C., Rochat H., Scheuer T., and Catterall W. A. (1998) Voltage sensor-trapping: enhanced activation of sodium channels by beta-scorpion toxin bound to the S3–S4 loop in domain II. Neuron 21, 919–931.PubMedCrossRefGoogle Scholar
  122. 122.
    Leveque C., el Far O., Martin-Moutot N., Sato K., Kato R., Takahashi M., et al. (1994) Purification of the N-type calcium channel associated with syntaxin and synaptotagmin. A complex implicated in synaptic vesicle exocytosis. J. Biol. Chem. 269, 6306–6312.PubMedGoogle Scholar
  123. 123.
    Sheng Z. H., Rettig J., Takahashi M., and Catterall W. A. (1994) Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13, 1303–1313.PubMedCrossRefGoogle Scholar
  124. 124.
    Tobi D., Wiser O., Trus M., and Atlas D. (1998) N-type voltage-sensitive calcium channel interacts with syntaxin, synaptotagmin and SNAP-25 in a multiprotein complex. Receptors Channels. 6, 89–98.PubMedGoogle Scholar
  125. 125.
    Catterall W. A. (1999) Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release. Ann. NY Acad. Sci. 868, 144–159.PubMedCrossRefGoogle Scholar
  126. 126.
    Wu L. G., Westenbroek R. E., Borst J. G., Catterall W. A., and Sakmann B. (1999) Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J. Neurosci. 19, 726–736.PubMedGoogle Scholar
  127. 127.
    Westenbroek R. E., Hoskins L., and Catterall W. A. (1998) Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J. Neurosci. 18, 6319–6330.PubMedGoogle Scholar
  128. 128.
    Zhong H., Yokoyama C. T., Scheuer T., and Catterall W. A. (1999) Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nal. Neurosci. 2, 939–941.CrossRefGoogle Scholar
  129. 129.
    Coppola T., Waldmann R., Borsotto M., Heurteaux C., Romey G., Mattei M. G., et al. (1994) Molecular cloning of a murine N-type calcium channel alpha 1 subunit. Evidence for isoforms, brain distribution, and chromosomal localization. FEBS Lett. 338, 1–5.PubMedCrossRefGoogle Scholar
  130. 130.
    Okagaki R., Izumi H., Okada T., Nagahora H., Nakajo K., and Okamura Y. (2001) The maternal transcript for truncated voltage-dependent Ca2+ channels in the ascidian embryo: a potential suppressive role in Ca2+ channel expression. Dev. Biol. 230, 258–277.PubMedCrossRefGoogle Scholar
  131. 131.
    Scott V. E., Felix R., Arikkath J., and Campbell K. P. (1998) Evidence for a 95 kDa short form of the alphalA subunit associated with the omega-conotoxin MVIIC receptor of the P/Q-type Ca2+ channels. J. Neurosci. 18, 641–647.PubMedGoogle Scholar
  132. 132.
    Malouf N. N., McMahon D. K., Hainsworth C. N., and Kay B. K. (1992) A two-motif isoform of the major calcium channel subunit in skeletal muscle. Neuron. 8, 899–906.PubMedCrossRefGoogle Scholar
  133. 133.
    Wielowieyski P. A., Wigle J. T., Salih M., Hum P., and Tuana B. S. (2001) Alternative splicing in intracellular loop connecting domains II and III of the alpha 1 subunit of Cav 1.2 Ca2+ channels predicts two-domain polypeptides with unique C-terminal tails. J. Biol. Chem. 276, 1398–1406.PubMedCrossRefGoogle Scholar
  134. 134.
    Bezprozvanny I., Scheller R. H., and Tsien R. W. (1995) Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature 378, 623–626.PubMedCrossRefGoogle Scholar
  135. 135.
    Wiser O., Bennett M. K., and Atlas D. (1996) Functional interaction of syntaxin and SNAP-25 with voltage-sensitive L- and N-type Ca2+ channels. EMBO J. 15, 4100–4110.PubMedGoogle Scholar
  136. 136.
    Stocker J. W., Nadasdi L., Aldrich R. W., and Tsien R. W. (1997) Preferential interaction of omega-conotoxins with inactivated N-type Ca2+ channels. J. Neurosci. 17, 3002–3013.PubMedGoogle Scholar
  137. 137.
    Scott V. E., De Waard M., Liu H., Gurnett C. A., Venzke D. P., Lennon V. A., et al. (1996) Beta subunit heterogeneity in N-type Ca2+ channels. J. Biol. Chem. 271, 3207–3212.PubMedCrossRefGoogle Scholar
  138. 138.
    Kongsamut S., Lipscombe D., and Tsien R. W. (1989) The N-type Ca channel in frog sympathetic neurons and its role in alpha-adrenergic modulation of transmitter release. Ann. NY Acad. Sci. 560, 312–333.PubMedCrossRefGoogle Scholar
  139. 139.
    Restituito S., Thompson R. M., Eliet J., Raike R. S., Riedl M., Charnet P., et al. (2000) The polyglutamine expansion in spinocerebellar ataxia type 6 causes a beta subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. J. Neurosci. 20, 6394–6403.PubMedGoogle Scholar
  140. 140.
    Peterson B. Z., Lee J. S., Mulle J. G., Wang Y., de Leon M., and Yue D. T. (2000) Critical determinants of Ca(2+)-dependent inactivation within an EF-hand motif of L-type Ca(2+) channels. Biophyst. J. 78, 1906–1920.Google Scholar
  141. 141.
    Kepplinger K. J., Forstner G., Kahr H., Leitner K., Pammer P., Groschner K., et al. (2000) Molecular determinant for run-down of L-type Ca2+ channels localized in the carboxyl terminus of the 1C subunit. J. Physiol. 529 Pt 1, 119–130.PubMedCrossRefGoogle Scholar
  142. 142.
    Hering S., Berjukow S., Sokolov S., Marksteiner R., Weiss R. G., Kraus R., et al. (2000) Molecular determinants of inactivation in voltage-gated Ca2+ channels. J. Physiol. 528 Pt 2, 237–249.PubMedCrossRefGoogle Scholar
  143. 143.
    Gao T., Bunemann M., Gerhardstein B. L., Ma H., and Hosey M. M. (2000) Role of the C terminus of the alpha 1C (CaV1.2) subunit in membrane targeting of cardiac L-type calcium channels. J. Biol. Chem. 275, 25436–25444.PubMedCrossRefGoogle Scholar
  144. 144.
    Zuhlke R. D., Pitt G. S., Deisseroth K., Tsien R. W., and Reuter H. (1999) Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162.PubMedCrossRefGoogle Scholar
  145. 145.
    Ivanina T., Blumenstein Y., Shistik E., Barzilai R., and Dascal N. (2000) Modulation of L-type Ca2+ channels by gbeta gamma and calmodulin via interactions with N and C termini of alpha 1C. J. Biol. Chem. 275, 39846–39854.PubMedCrossRefGoogle Scholar
  146. 146.
    Wei X., Neely A., Lacerda A. E., Olcese R., Stefani E., Perez-Reyes E., et al. (1994) Modification of Ca2+ channel activity by deletions at the carboxyl terminus of the cardiac alpha 1 subunit. J. Biol. Chem. 269, 1635–1640.PubMedGoogle Scholar
  147. 147.
    Hell J. W., Westenbroek R. E., Elliott E. M., and Catterall W. A. (1994) Differential phosphorylation, localization, and function of distinct alpha 1 subunits of neuronal calcium channels. Two size forms for class B, C, and D alpha 1 subunits with different COOH-termini. Ann. NY Acad. Sci. 747, 282–293.PubMedCrossRefGoogle Scholar
  148. 148.
    Soldatov N. M., Zuhlke R. D., Bouron A., and Reuter H. (1997) Molecular structures involved in L-type calcium channel inactivation. Role of the carboxyl-terminal region encoded by exons 40–42 in alpha1C subunit in the kinetics and Ca2+ dependence of inactivation. J. Biol. Chem. 272, 3560–366.PubMedCrossRefGoogle Scholar
  149. 149.
    Missler M. and Sudhof T. C. (1998) Neuroexins: three genes and 1001 products. Trends Genet. 14, 20–26.PubMedCrossRefGoogle Scholar
  150. 150.
    Graveley B. R. (2001) Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 17, 100–107.PubMedCrossRefGoogle Scholar
  151. 151.
    Ge K., DuHadaway J., Du W., Herlyn M., Rodeck U., and Prendergast G. C. (1999) Mechanism for elimination of a tumor suppressor: aberrant splicing of a brain-specific exon causes loss of function of Bin 1 in melanoma. Proc. Natl. Acad. Sci. USA 96, 9689–9694.PubMedCrossRefGoogle Scholar
  152. 152.
    Shoemaker D. D., Schadt E. E., Armour C. D., He Y. D., Garrett-Engele P., McDonagh P. D., et al. (2001) Experimental annotation of the human genome using microarray technology. Nature 409, 922–927.PubMedCrossRefGoogle Scholar
  153. 153.
    Foehring R. C., Mermelstein P. G., Song W. J., Ulrich S., and Surmeier D. J. (2000) Unique properties of R-type calcium currents in neocortical and neostriatal neurons. J. Neurophysiol. 84, 2225–2236.PubMedGoogle Scholar
  154. 154.
    Rubin G. M., Yandell M. D., Wortman J. R., Gabor Miklos G. L., Nelson C. R., Hariharan I. K., et al. (2000) Comparative genomics of the eukaryotes. Science. 287, 2204–2215.PubMedCrossRefGoogle Scholar
  155. 155.
    Smith L. A., Peixoto A. A., and Hall J. C. (1998) RNA editing in the Drosophila DMCA1A calcium-channel alpha 1 subunit transcript. J. Neurogenet. 12, 227–240.PubMedCrossRefGoogle Scholar
  156. 156.
    Williams M. E., Brust P. F., Feldman D. H., Patthi S., Simerson S., Maroufi A., et al. (1992) Structure and functional expression of an omega-conotoxin-sensitive human N-type calcium channel. Science. 257, 389–395.PubMedCrossRefGoogle Scholar
  157. 157.
    Bech-Hansen N. T., Naylor M. J., Maybaum T. A., Pearce W. G., Koop B., Fishman G. A., et al. (1998) Loss-of-function mutations in a calcium-channel alphal-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat. Genet. 19, 264–267.PubMedCrossRefGoogle Scholar
  158. 158.
    Dubel S. J., Starr T. V., Hell J., Ahlijanian M. K., Enyeart J. J., Catterall W. A., et al. (1992) Molecular cloning of the alpha-1 subunit of an omega-conotoxin-sensitive calcium channel. Proc. Natl. Acad. Sci. USA 89, 5058–5062.PubMedCrossRefGoogle Scholar
  159. 159.
    Soong T. W., Stea A., Hodson C. D., Dubel S. J., Vincent S. R., and Snutch T. P. (1993) Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260, 1133–1136.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • Diane Lipscombe
    • 1
  • Jennifer Qian Pan
    • 1
    • 2
  • Annette C. Gray
    • 1
  1. 1.Department of NeuroscienceBrown UniversityProvidence
  2. 2.Incellico, Inc.Durham

Personalised recommendations