Molecular Neurobiology

, Volume 25, Issue 2, pp 113–132 | Cite as

Calcium and retinal function

Article

Abstract

We survey the primary roles of calcium in retinal function, including photoreceptor transduction, transmitter release by different classes of retinal neuron, calcium-mediated regulation of gap-junctional conductance, activation of certain voltage-gated channels for K+ and C1, and modulation of postsynaptic potentials in retinal ganglion cells. We discuss three mechanisms for changing [Ca2+]i, which include flux through voltage-gated calcium channels, through ligand-gated channels, and by release from stores. The neuromodulatory pathways affecting each of these routes of entry are considered. The many neuromodulatory mechanisms in which calcium is a player are described and their effects upon retinal function discussed.

Index Entries

Calcium retina phototransduction ganglion cell calmodulin glutamate metabotropic glutamate receptor GABA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pugh E. N., Jr. and Lamb T. D. (2000) Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation, in Handbook of Biological Physics, vol. 3 (Stavenga D. G., DeGrip W. J., and Pugh E. N. Jr., eds), Elsevier, Amsterdam pp. 183–255.Google Scholar
  2. 2.
    Cohen A. I. (1972) Rods and cones, in Sensory Physiology, vol. VII/2 (Fuortes M. G. F., ed.), Springer-Verlag, Berlin, pp. 63–110.Google Scholar
  3. 3.
    Owen W. G. (1987) Ionic conductances in rod photoreceptors. Ann. Rev. Physiol. 49, 743–764.Google Scholar
  4. 4.
    Haynes L. W., Kay A. R., and Yau K-W. (1986) Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane. Nature 321, 66–70.PubMedGoogle Scholar
  5. 5.
    Zimmerman A. L. and Baylor D. A. (1986) Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores. Nature 321, 70–2.PubMedGoogle Scholar
  6. 6.
    Yau K. W. and Nakatani K. (1984) Electrogenic Na-Ca exchange in retinal rod outer segment. Nature 311, 661–663.PubMedGoogle Scholar
  7. 7.
    Koch K. W., Lambrecht H. G., Laberecht M., Redburn D., and Schmidt H. W. (1994) Functional coupling of a Ca/calmodulin-dependent nitric oxide synthase and soluble guanylyl cyclase in vertebrate photoreceptor cells. EMBO J. 13, 3312–3320.PubMedGoogle Scholar
  8. 8.
    Yoshida A., Pozdnyakov N., Dang L., Orselli S. M., Reddy V. N., and Sitaramayya A. (1995) Nitric oxide synthesis in retinal photoreceptor cells. Vis. Neurosci. 12, 493–500.PubMedGoogle Scholar
  9. 9.
    Pugh E. N. Jr, Nikonov S., and Lamb T. D. (1999) Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr. Opin. Neurobiol. 9, 410–418.PubMedGoogle Scholar
  10. 10.
    Dowling J. E. (1987) The Retina: An Approachable Part of the Brain. Belknap Press, Cambridge, MA.Google Scholar
  11. 11.
    Thoreson W. B. and Witkovsky P. (1999) Glutamate receptors and circuits in the vertebrate retina. Prog. Ret. Eye Res. 18, 765–810.Google Scholar
  12. 12.
    Bader C. R., Bertrand D., and Schwartz E. A. (1982) Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina. J. Physiol. (London) 331, 253–284.Google Scholar
  13. 13.
    Corey D. P., Dubinsky J. M., and Schwartz E. A. (1984) The calcium current in inner segments of rods from the salamander (Ambystoma tigrinum) retina. J. Physiol. (London) 354, 557–75.Google Scholar
  14. 14.
    Lasater E. M. and Witkovsky P. (1991) The calcium current of turtle cone photoreceptor axon terminals. Neurosci. Res. Suppl. 15, S165-S173.PubMedGoogle Scholar
  15. 15.
    Yagi T. and MacLeish (1994) Ionic conductances of monkey solitary cone inner segments. J. Neurophysiol. 71, 656–665.PubMedGoogle Scholar
  16. 16.
    Wilkinson M. F. and Barnes S. (1996) The dihydropyridine-sensitive calcium channel subtype in cone photoreceptors. J. Gen. Physiol. 107, 621–630.PubMedGoogle Scholar
  17. 17.
    Morgans C. W. (2000) Neurotransmitter release at ribbon synapses in the retina. Immunol. Cell Biol. 78, 442–446.PubMedGoogle Scholar
  18. 18.
    Nachman-Clewner M., St. Jules R., and Townes-Anderson E. (1999) L-type calcium channels in the photoreceptor ribbon synapse: localization and role in plasticity. J. Comp. Neur. 415, 1–16.PubMedGoogle Scholar
  19. 19.
    Bell D. C., Butcher A. J., Berrow N. S., Page K. M., Brust P. F., Nesterova A., et al. (2001) Biophysical properties, pharmacology, and modulation of human, neuronal L-type (alpha(1D), Ca(V)1.3) voltage-dependent calcium currents. J. Neurophysiol. 85, 816–827.PubMedGoogle Scholar
  20. 20.
    Akopian A., Johnson J. J., Gabriel R., Brecha N., and Witkovsky P. (2000) Somatostatin modulates voltage-gated K+ and Ca2+ currents in rod and cone photoreceptors of the salamander retina. J. Neurosci. 20, 929–936.PubMedGoogle Scholar
  21. 21.
    Stella S. L. and Thoreson W. B. (2000) Differential modulation of rod and cone calcium currents in tiger salamander retina by D2 dopamine receptors and camp. Eur. J. Neurosci. 12, 3537–3548.PubMedGoogle Scholar
  22. 21a.
    Thoreson W. B. and Stella S. L. (2000) Anion Modulation of calcium current voltage-dependence and amplitude in salamander rods. Biochem. Biophys. Acta. 1464, 142–150.PubMedGoogle Scholar
  23. 22.
    Strom T. M., Nyakatura G., Apfelstedt-Sylla E., Hellebrand H., Lorenz B., Weber B. H. F., et al. (1998) An L-type calcium-channel gene mutated in incomplete x-linked congenital stationary night blindness. Nat. Genet. 19, 260–263.PubMedGoogle Scholar
  24. 23.
    Bech-Hansen N. T., Naylor M. J., Maybaum T. A., Pearce W. G., Koop B., Fishman G. A., et al. (1998) Loss-of-function mutations in a calcium-channel α1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nature Genet. 19, 264–267.PubMedGoogle Scholar
  25. 24.
    Krizaj D. and Copenhagen D. R. (1998) Compartmentalization of calcium extrusion mechanisms in the outer and inner segments of photoreceptors. Neuron 21, 249–256.PubMedGoogle Scholar
  26. 25.
    Maricq A. V. and Korenbrot J. I. (1988) Calcium and calcium-dependent chloride currents generate action potentials in solitary cone photoreceptors. Neuron. 1, 503–515.PubMedGoogle Scholar
  27. 26.
    Schmitz Y. and Witkovsky P. (1996) Glutamate release by the intact light-responsive photore-ceptor layer of the Xenopus retina. J. Neurosci. Methods. 68, 55–60.PubMedGoogle Scholar
  28. 27.
    Schmitz Y. and Witkovsky P. (1997) Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive calcium channel. Neuroscience. 78, 1209–1216.PubMedGoogle Scholar
  29. 28.
    Cahille G. M. and Besharse J. C. (1992) Light-sensitive melatonin synthesis by Xenopus photoreceptors after destruction of the inner retina. Vis. Neurosci. 8, 487–490.Google Scholar
  30. 29.
    Witkovsky P., Schmitz Y., Akopian A., Krizaj D., and Tranchina D. (1997) Gain of rod to horizontal cell synaptic transfer: relation to glutamate release and a dihydropyridine-sensitive calcium current. J. Neurosci. 17, 7297–7306.PubMedGoogle Scholar
  31. 30.
    Rieke F. and Schwartz E. A. (1994) A cGMP-gated current can control exocytosis at cone synapses. Neuron 13, 863–873.PubMedGoogle Scholar
  32. 31.
    Savchenko A., Barnes S., and Kramer R. H. (1997) Cyclic-nucleotide-gated channels mediate synaptic feedback by nitric oxide. Nature 390, 694–698.PubMedGoogle Scholar
  33. 32.
    Muresan Z. and Besharse J. C. (1993) D2-like dopamine receptors in amphibian retina: localization with fluorescent ligands. J. Comp. Neurol. 331, 149–160.PubMedGoogle Scholar
  34. 33.
    Johnson J., Wong H., Walsh H. J., and Brecha N. C. (1999) Somatostatin receptor sst2A expression in the rat retina. Neuroscience 94, 675–683.PubMedGoogle Scholar
  35. 34.
    Barnes S., Merchant V., and Mahmud F. (1993) Modulation of transmission gain by protons at the photoreceptor output synapse. Proc. Natl. Acad. Sci. USA 90, 10,081–10,085.Google Scholar
  36. 35.
    Yamamoto F., Borgula G. A., and Steinberg R. H. (1992) Effects of light and darkness on pH outside rod photoreceptors in the cat retina. Exp. Eye Res. 54, 685–697.PubMedGoogle Scholar
  37. 36.
    Kurennyi D. E., Moroz L. L., Turner R. W., Sharkey K. A., and Barnes S. (1994) Modulation of ion channels in rod photoreceptors by nitric oxide. Neuron 13, 315–324.Google Scholar
  38. 37.
    Kurennyi D. E., Thurlow G. A., Turner R. W., Moroz L. L., Sharkey K. A., and Barnes S. (1995) Nitric oxide synthase in tiger salamander retina. J. Comp. Neur. 361, 525–536.Google Scholar
  39. 38.
    Eldred W. D. (2000) Nitric oxide in the retina. Functional neuroanatomy of the nitric oxide system, in Handbook of Chemical Neuroanatomy 17 (Steinbusch H. W. M., De Vente J., and Vincent S. R., eds.), Elsevier, Amsterdam pp. 111–145.Google Scholar
  40. 39.
    Thoreson W. B., Nitzan R., and Miller R. F. (1997) Reducing extracellular Cl suppresses dihydropyridine-sensitive Ca2+ currents and synaptic transmission in amphibian photoreceptors. J. Neurophysiol. 77, 2175–2190.PubMedGoogle Scholar
  41. 40.
    Baldridge W. H., Kurennyi D. E., and Barnes S. (1998) Calcium-sensitive calcium influx in photoreceptor inner segments. J. Neurophysiol. 79, 3012–3018.PubMedGoogle Scholar
  42. 41.
    Piccolino M., Byzov A. L., Kurennyi D. E., Pignatelli A., Sappia F., Wilkinson M., and Barnes S. (1996) Low-calcium-induced enhancement of chemical synaptic transmission from photoreceptors to horizontal cells in the vertebrate retina. Proc. Natl. Acad. Sci. USA 93, 2302–2306.PubMedGoogle Scholar
  43. 42.
    Piccolino M. and Gerschenfeld H. M. (1980) Characteristics and ionic processes involved in feedback spikes of turtle cones. Proc. R. Soc. Lond B. 206, 439–463.PubMedGoogle Scholar
  44. 43.
    Burkhardt D. A. Gottesman J., and Thoreson W. B. (1988) Prolonged depolarization in turtle cones evoked by current injection and stimulation of the receptive field surround. J. Physiol. (Lond) 4076, 329–348.Google Scholar
  45. 44.
    Thoreson W. B. and Burkhardt D. A. (1990) Effects of synaptic blocking agents on the depolarizing responses of turtle cones evoked by surround illumination. Vis. Neurosci. 5, 571–83.PubMedGoogle Scholar
  46. 45.
    Pan Z.-H., and Hu, J-J. (2000) Voltage-dependent Na+ currents in mammalian retinal cone bipolar cells. J. Neurophysiol. 84, 2564–2571.PubMedGoogle Scholar
  47. 46.
    Ungar F., Poscopo I., and Holtzman E. (1981) Calcium accumulation in intracellular compartments of frog retinal rod photoreceptors. Brain Res. 205, 200–206.PubMedGoogle Scholar
  48. 47.
    Peng Y. W., Sharp A. H., Snyder S. H., and Yau K-W. (1991) Localization of the inositol 1, 4, 5-trishosphate receptor in synaptic terminals in the vertebrate retina. Neuron 6, 525–531.PubMedGoogle Scholar
  49. 48.
    Akopian A. and Witkovsky P. (1996) Activation of metabotropic glutamate receptors Decreases high-threshold calcium current in spiking neurons of the Xenopus retina. Vis. Neurosci, 13, 549–557.PubMedGoogle Scholar
  50. 49.
    Krizaj D., Bao J.-X., Schmitz Y., Witkovsky P., and Copenhagen D. R. (1999) Caffeine-sensitive calcium stores regulate synaptic transmission from retinal rod photoreceptors. J. Neurosci. 19, 7249–7261.PubMedGoogle Scholar
  51. 50.
    Wu D. and Zhu P. H. (1999) Caffeine-sensitive Ca2+ stores in carp retinal bipolar cells. Neuro Report 10, 3897–3901.Google Scholar
  52. 51.
    Kobayashi K., Sakaba T., and Tachibana M. (1995) Potentiation of Ca2+ transients in the presynaptic terminals of goldfish retinal bipolar cells. J. Physiol. (Lond) 482, 7–13.Google Scholar
  53. 52.
    Shen W. and Slaughter M. M. (1998) Metabotropic and ionotropic glutamate receptors regulate calcium channel currents in salamander retinal ganglion cells. J. Physiol. (Lond) 510, 815–828.Google Scholar
  54. 53.
    DeVries S. H. and Schwartz E. A. (1999) Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina. Nature 397, 157–60.PubMedGoogle Scholar
  55. 54.
    Nakajima Y., Iwakabe H., Akazawa C., Nawa H., Shigemoto R., Mizuno N., and Nakanishi S. (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem. 268, 11,868–11,873.Google Scholar
  56. 55.
    Vardi N. (1998) Alpha subunit of Go localizes in the dendritic tips of ON bipolar cells. J. Comp. Neur. 395, 43–52.PubMedGoogle Scholar
  57. 56.
    Shiells R. A. and Falk G. (1990) Glutamate receptors of rod bipolar cells are linked to a cyclic GMP cascade via a G-protein. Proc. R. Soc. Lond. B. Biol. Sci. 22, 91–94.Google Scholar
  58. 57.
    Nawy S. and Jahr C. E. (1990) Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 346, 269–271.PubMedGoogle Scholar
  59. 58.
    Shiells R. A. and Falk G. (1999) A rise in intracellular Ca2+ underlies light adaptation in dogfish retinal ‘on’ bipolar cells. J. Physiol. (Lond) 514, 343–350.Google Scholar
  60. 59.
    Nawy, S. (2000) Regulation of the On bipolar cell mGluR6 pathway by Ca2+ J. Neurosci. 20, 4471–4479.PubMedGoogle Scholar
  61. 60.
    Marc R. E., Liu W.-L., Kalloniatis M. Raiguel SF, and van Haesendonck E. (1990) Patterns of glutamate immunoreactivity in the goldfish retina. J. Neurosci. 10, 4006–4034.PubMedGoogle Scholar
  62. 61.
    Ehinger B., Ottersen O. P., Storm-Mathiesen J., and Dowling J. E. (1988) Bipolar cells in the turtle retina are strongly immunoreactive for glutamate. Proc. Natl. Acad. Sci. USA 85, 8321–832.PubMedGoogle Scholar
  63. 62.
    Kaneko A, Pinto L. H., and Tachibana M. (1989) Transient calcium current of retinal bipolar cells of the mouse. J. Physiol. (Lond) 410, 613–629.Google Scholar
  64. 63.
    Maguire G., Maple B., Lukasiewicz P., and Werblin F. (1989) Gamma-aminobutyrate type B receptor modulation of L-type calcium channel current at bipolar cell terminals in the retina of the tiger salamander. Proc. Natl. Acad. Sci. USA 86, 10144–10147.PubMedGoogle Scholar
  65. 64.
    Pan, Z.-H. (2000) Differential expression of high- and two types of low-voltage-activated calcium currents in rod and cone bipolar cells of the rat retina. J. Neurophysiol. 83, 513–527.PubMedGoogle Scholar
  66. 65.
    Tachibana M., Okada T., Arimura T., Kobayashi K., and Piccolino M. (1993) Dihydropyridine-sensitive calcium current mediates neurotransmitter release from bipolar cells of the goldfish retina. J. Neurosci. 13, 2898–2909.PubMedGoogle Scholar
  67. 66.
    Heidelberger R., Heinemann C., Neher E., and Matthews G. (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513–515.PubMedGoogle Scholar
  68. 67.
    Lagnado L., Gomis A., and Job C. (1996) Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. Neuron 17, 957–967.PubMedGoogle Scholar
  69. 68.
    Gomis A. Burrone J., and Lagnado L. (1999) Two actions of calcium regulate the supply of releasable vesicles at the ribbon synapse of retinal bipolar cells. J. Neurosci. 19, 6309–6317.PubMedGoogle Scholar
  70. 69.
    Wu S. M., Gao F., and Yang X. L. (2001) Non-linear high-gain and sustained-to transient signal transduction from outer to inner retina is mediated by transient depolarizing potentials. Invest. Ophthal. Vis. Sci. 42, B762.Google Scholar
  71. 70.
    Zenisek D. and Matthews G. (1998) Calcium action potentials in retinal bipolar neurons. Vis. Neurosci. 15, 69–75PubMedGoogle Scholar
  72. 71.
    Protti D. A., Flores-Herr N., von Gersdorff H. (2000) Light evokes Ca2+ spikes in the axon terminal of a retinal bipolar cell. Neuron 25, 215–227.PubMedGoogle Scholar
  73. 72.
    Minami N., Berglund K., Sakaba T., Kohmoto H., and Tachibana M. (1998) Potentiation of transmitter release by protein kinase C in goldfish retinal bipolar cells. J. Physiol. 512, 219–225.PubMedGoogle Scholar
  74. 73.
    Feigenspan A. and Bormann J. (1994) Modulation of GABAC receptors in rat retinal bipolar cells by protein kinase. C. J. Physiol (Lond) 481, 325–330.Google Scholar
  75. 74.
    Heidelberger R. and Matthews G. (1991) Inhibition of calcium influx and calcium current by γ-aminobutyric acid in single synaptic terminals. Proc. Natl. Acad. Sci. USA 88, 7135–7139.PubMedGoogle Scholar
  76. 75.
    Lukasiewicz P. D. and Werblin F. S. (1994) A novel GABA receptor modulates synaptic transmission from bipolar to ganglion cells in the tiger salamander retina. In salamander bipolar cells. J. Neurosci. 14, 1213–1223.PubMedGoogle Scholar
  77. 76.
    Rudy B. (1988) Diversity and ubiquity of K channels. Neuroscience 25, 729–749.PubMedGoogle Scholar
  78. 77.
    Sakaba T., Ishikane H., Tachibana M. (1997) Ca2+-activated K+ current at presynaptic terminals of goldfish retinal bipolar cells. Neurosci. Res. 27, 219–228.PubMedGoogle Scholar
  79. 78.
    Von Gersdorff H. and Matthews G. (1994) Inhibition of endocytosis by elevated internal calcium in a synaptic terminal. Nature 370, 652–655.PubMedGoogle Scholar
  80. 79.
    Reinhart P. H. and Levitan I. B. (1995) Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel. J, Neurosci. 15, 4572–4579.Google Scholar
  81. 79a.
    Von Gersdorff H. and Matthews G. (1999) Electrophysiology of synaptic vesicle cycling. Ann. Rev. Physiol. 61, 725–752.Google Scholar
  82. 80.
    Kolb H. (1995) Amacrine cells of the mammalian retina: neurocircuitry and functional roles. Eye 11, 904–923.Google Scholar
  83. 81.
    Gleason E., Borges S., and Wilson M. (1994) Control of transmitter release from retinal amacrine cells by Ca2+ influx and efflux. Neuron 13, 1109–1117.PubMedGoogle Scholar
  84. 82.
    Gleason E, Borges S., and Wilson M. (1995) Electrogenic Na-Ca exchange clears Ca2+ loads from retinal amacrine cells in culture. J. Neurosci. 15, 3612–3621.PubMedGoogle Scholar
  85. 83.
    Borges S., Gleason E., Turelli M., and Wilson M. (1995) The Kinetics of quantal transmitter release from retinal amacrine cells. Proc. Natl. Acad. Sci. USA 92, 6896–6900.PubMedGoogle Scholar
  86. 84.
    Taschenberger H. and Grantyn R. (1995) Several types of Ca2+ channels mediate glutamatergic synaptic responses to activation of single Thy-1-immunolabeled rat retinal ganglion neurons. J. Neurosci. 15, 2240–2254.PubMedGoogle Scholar
  87. 85.
    Shen W. and Slaughter M. M. (1999a) Metabotropic GABA receptors facilitate L-type and inhibit N-type calcium channels in single salamander retinal neurons. J. Physiol. 516, 711–718.PubMedGoogle Scholar
  88. 86.
    Witkovsky P., Owen W. G., and Woodworth M. (1983) Gap junctions among the perikarya, dendrites and axon terminals of the luminosity-type horizontal cells of the turtle retina. J. Comp. Neur. 216, 359–368.PubMedGoogle Scholar
  89. 87.
    Vaney D. I. (1994) Patterns of neuronal coupling in the retina. Prog. Retina Eye Res. 13, 301–355.Google Scholar
  90. 88.
    Gold G. H. and Dowling J. E. (1979) Photoreceptor coupling in retina of the toad, Bufo marinus. I Anatomy. J. neurophysiol. 42, 292–310.PubMedGoogle Scholar
  91. 89.
    Wong-Reiley M. T. (1974) Synaptic organization of the inner plexiform layer in the retina of the tiger salamander. J. Neurocytol. 3, 1–33.Google Scholar
  92. 90.
    Van Haesendonck E. and Missotten L. (1983) Interbipolar contacts in the dorsal inner plexiform layer in the retina of Callionymus lyra L. J. Ultrastruct. Res. 83, 303–311.PubMedGoogle Scholar
  93. 91.
    Bruzzone R. and Ressot C. (1997) Connexins, gap junctions and cell-cell signaling in the nervous system. Eur. J. Neurosci. 9, 1–6.PubMedGoogle Scholar
  94. 92.
    DeVries S. H., Schwartz E. A. (1992) Hemigap-junction channels in solitary horizontal cells of the catfish retina. J. Physiol. (London), 445, 201–230.Google Scholar
  95. 93.
    Kamermans M., Fahrenfort I., Schultz K., Janssen-Bienhold U., Sjoerdsma T., and Weiler R. (2001) Hemichannel-mediated inhibition in the outer retina. Science 292, 1178–1180.PubMedGoogle Scholar
  96. 94.
    Gerschenfeld H. M., Neyton J., Piccolino M., and Witkovsky P. (1982) L-horizontal cells of the turtle: network organization and coupling modulation. Biomed. Res. 3, 21–34.Google Scholar
  97. 95.
    Knapp A. G. and Dowling J. E. (1987) Dopamine enhances excitatory amino acid-gated conductances in cultured retinal horizontal cells. Nature 325, 437–439.PubMedGoogle Scholar
  98. 96.
    DeVries S. H. and Schwartz E. A. (1989) Modulation of an electrical synapse between solitary pairs of catfish horizontal cells by dopamine and second messengers. J. Physiol. (Lond) 414 351–75.Google Scholar
  99. 97.
    Lu C. and McMahon D. G. (1997) Modulation of hybrid bass retinal gap junctional channel gating by nitric oxide. J. Physiol. (London) 499, 689–699.Google Scholar
  100. 98.
    McMahon D. G. and Mattson M. P. (1996) Horizontal cell electrical coupling in the giant danio: synaptic modulation by dopamine and synaptic maintenance by calcium. Brain Res. 718, 89–96.PubMedGoogle Scholar
  101. 99.
    Takahashi K. I. and Copenhagen D. R. (1996) Modulation of neuronal function by intracellular pH. Neurosci. Res. 24, 109–116.PubMedGoogle Scholar
  102. 100.
    Takahashi K.-I. and Dixon D. B. Copenhagen D. R. (1993) Modulation of a sustained calcium current by intracellular pH in horizontal cells of fish retina. J. Gen. Physiol. 101: 695–714.PubMedGoogle Scholar
  103. 101.
    Dixon D. B., Takahashi K.-I., and Copenhagen D. R. (1993) L-glutmate suppresses HVA calcium current in catfish horizontal cells by raising intracellular proton concentration. Neuron 11, 267–277.PubMedGoogle Scholar
  104. 102.
    Chesler M. (1990) The regulation and modulation of pH in the nervous system. Prog. Neurobiol. 34, 401–427.PubMedGoogle Scholar
  105. 103.
    Shatz C. J. (1994) Role of spontaneous neural activity in the patterning of connections between retina and LGN during visual system development. Int. J. Dev. Neurosci. 12, 531–546.PubMedGoogle Scholar
  106. 104.
    Stellwagen D., Shatz C. J., and Feller M. B. (1999) Dynamics of retinal waves are controlled by cyclic AMP. Neuron 24, 673–685.PubMedGoogle Scholar
  107. 105.
    Wong R. O., Chernjavsky A., Smith S. J., and Schatz C. J. (1995) Early functional neural networks in the developing retina. Nature 374, 716–718.PubMedGoogle Scholar
  108. 106.
    Feller M. B., Welk D. P., Stelwagen D., Werblin F., and Shatz C. J. (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272, 182–187.Google Scholar
  109. 107.
    Catsicas M. and Mobbs P. (1995) Retinal development: waves are swell. Curr. Biol. 5, 977–979.PubMedGoogle Scholar
  110. 108.
    Hardingham G. E., Arnold F. J. L., and Bading H. (2001) Nuclear calcium signaling controls CREB-mediated gene eexpression triggered by synaptic activity. Nature Neurosci. 4, 261–267.PubMedGoogle Scholar
  111. 109.
    Newman E. A. and Zahs K. R. (1997) Calcium waves in retinal glial cells. Science 275, 844–847.PubMedGoogle Scholar
  112. 110.
    Newman E. A. and Zahs K. R. (1998) Modulation of neuronal activity by glial cells in the retina. J. Neurosci. 18, 4022–4028.PubMedGoogle Scholar
  113. 111.
    Newman E. A. (2001) Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J Neurosci. 21, 2215–2223.PubMedGoogle Scholar
  114. 112.
    Akopian A. (2000) Neuromodulation of lig- and- and voltage-gated channels in amphibian retina. Microscopy Res. 50, 403–410 photoreceptors of the salamander retina. J. Neurosci. 20, 929–936.Google Scholar
  115. 113.
    Brivanlou I. H. and Meister M. (1998) Mechanisms of concerted firing among retinal ganglion cells. Neuron 20, 527–539.PubMedGoogle Scholar
  116. 114.
    Meister M. and Berry M. J. (1999) The neural code of the retina. Neuron 22, 435–450.PubMedGoogle Scholar
  117. 115.
    Melena J. and Osborne N. N. (2001) Voltage-dependent calcium channels in the rat retina:Involvement in NMDA-stimulated influx of calcium. Exp. Eye Res. 72, 393–401.PubMedGoogle Scholar
  118. 116.
    Gilbertson T. A., Scobey R., Wilson M. (1991) Permeation of calcium ions through non-NMDA glutamate channels in retinal bipolar cells. Science 251, 1613–1615.PubMedGoogle Scholar
  119. 117.
    Duarte C. B., Santos P. F., and Carvalho A. P. (1996) [Ca2+]i regulation by glutamate receptor agonists in cultured chick retina cells. Vis. Res. 36, 1091–1102.PubMedGoogle Scholar
  120. 118.
    Sugioka M., Fukuda Y., Yamashita M. (1998) Development of glutamate-induced intracellular Ca2+ rise in the embryonic chick retina. J. Neurobiol. 34, 113–125.PubMedGoogle Scholar
  121. 119.
    Leinders-Zufall T., Rand M. N., Waxman S. G., and Kocsis J. D. (1994) Differential role of two Ca permeable non-NMDA glutamate channels in rat retinal ganglion cells: kainate-induced cytoplasmic and nuclear Ca signals. J. Neurophysiol. 72, 2503–2516.PubMedGoogle Scholar
  122. 120.
    Zhang D., Sucher N. J., and Lipton S. A. (1995) Coexpression of AMPA/kaina te receptor-operated channels with high and low Ca permeability in single rat retinal ganglion cells. Neuroscience 67, 177–188.PubMedGoogle Scholar
  123. 121.
    Taschenberger H., Juttner R., and Grantyn R. (1999) Ca2+ permeable P2X receptor channels in cultured rst retinal ganglion cells. J. Neurosci. 19, 3353–3366.PubMedGoogle Scholar
  124. 122.
    Edwards J. A. and Cline H. T. (1999) Lioght-induced calcium influx into retinal axons is regulated by presynaptic nicotininc acetylcholine recepotr activity in vivo. J. Neurophysiol. 81, 895–907.PubMedGoogle Scholar
  125. 123.
    Denk W. and Detwiler P. B. (1999) Optical recording of light-evoked calcium signals in the functionally intact retina. Proc. Natl. Acad. Sci. USA 96, 7035–7040.PubMedGoogle Scholar
  126. 124.
    Massey S. C. (1990) Cell types using glutamate as a neurotransmitter in the vertebrate retina. Prog. Ret. Res. 9, 399–425.Google Scholar
  127. 125.
    Hollmann M. and Heinemann S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.PubMedGoogle Scholar
  128. 126.
    Burnashev N. (1998) Calcium permeability of ligand-gated channels. Cell Calcium 24, 325–332.PubMedGoogle Scholar
  129. 127.
    Lukasiewicz P. D., Wilson J. A., and Lawence J. E. (1997) AMPA-preferring receptors mediate excitatory synaptic inputs to retinal ganglion cells. J. Neurophysiol. 77, 57–64.PubMedGoogle Scholar
  130. 128.
    Massey S. C. and Miller R. F. (1988) Glutamate receptors of ganglion cells in the rabbit retina: evidence for glutamate as a bipolar cell transmitter. J. Physiol. (Lond) 405, 635–655.Google Scholar
  131. 129.
    Diamond J. S. and Copenhagen D. R. (1993) The contribution of NMDA and non-NMDA receptors to the light-evoked input-output characteristics of retinal ganglion cells. Neuron 11, 725–738.PubMedGoogle Scholar
  132. 130.
    Akopian A. and Witkovsky P. (2001) Intracellular calcium reduces light-induced excitatory post-synaptic responses in salamander retinal ganglion cells. J. Physiol. (London) 532, 43–53.Google Scholar
  133. 131.
    Tachibana M. (1985) Permeability changes induced by L-glutamate in solitary retinal horizontal cells isolated from Carassius auratus. J. Physiol. (Lond) 358, 153–167.Google Scholar
  134. 132.
    Peng Y. W., Blackstone C. P., Huganir R. L., and Yau K. W. (1995) Distribution of glutamate receptor subtypes in the vertebrate retina. Neuroscience 66, 483–497.PubMedGoogle Scholar
  135. 133.
    Hartveit E., Branstätter J. H., and Wässle H. (1995) Expression of the mRNA of seven metabotropic glutamate receptors (mGluR1 to 7) in the rat retina. An in situ hybridization study on tissue sections and isolated cells. Eur. J. Neurosci. 7, 1472–1483.PubMedGoogle Scholar
  136. 134.
    Brandstätter J. H., Koulen P., and Wässle H. (1998) Diversity of glutamate receptors in the mammalian retina. Vis. Res. 38, 1385–1397.PubMedGoogle Scholar
  137. 135.
    Koulen P., Kuhn R., Wässle H., and Brandstatter H. (1997) Group I metabotropic glutamate receptors mGluR1 alpha and mGluR5a: localization in both synaptic layers of the rat retina. J. Neurosci. 17, 2200–2211.PubMedGoogle Scholar
  138. 136.
    Awatramani G. B. and Slaughter M. M. (2000) Origin of transient and sustained responses in ganglion cells of the retina. J. Neurosci. 20, 7087–7095.PubMedGoogle Scholar
  139. 137.
    Rothe T., Bigle V., and Grantyn R. (1994) Potentiating and depressant effects of metabotropic glutamate receptor agonists on high-voltage-activated calcium currents in cultured retinal ganglion neurons from postnatal mice. Pflugers Arch. 426, 161–170.PubMedGoogle Scholar
  140. 138.
    Bindokas V. P. and Ishida A. T. (1991) (-)-baclofen and gamma-aminobutyric acid inhibit calcium currents in isolated retinal ganglion cells. Proc. Natl. Acad. Sci. USA. 88, 10759–10763.PubMedGoogle Scholar
  141. 139.
    Zhang J., Shen W., and Slaughter M. M. (1997) Two metabotropic GABA receptors differently modulate calcium currents in retinal ganglion cells. J. Gen. Physiol. 110, 45–58.PubMedGoogle Scholar
  142. 140.
    Liu Y. and Lasater E. M. (1994) Calcium currents in turtle retinal ganglion cells. II. Dopamine modulation via a cyclic AMP-dependent mechanism. J. Neurophysiol. 71, 743–752.PubMedGoogle Scholar
  143. 141.
    Hiroka K., Kourennyi D. E., and Barnes S. (2000) Calcium channel activation facilitated by nitric oxide in retinal ganglion cells. J. Neurophysiol. 83, 198–206.Google Scholar
  144. 142.
    Collingridge G. L. and Singer W. (1990) Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol. Sci. 11, 290–296.PubMedGoogle Scholar
  145. 143.
    Chittajallu R., Alford S., and Collingridge G. L. (1998) Ca2+ and synaptic plasticity. Cell Calcium 24, 377–385.PubMedGoogle Scholar
  146. 144.
    Shen W. and Slaughter M. M. (1999) Internal calcium modulates apparent affinity of metabotropic GABA receptors. J. Neurophysiol. 82, 3298–3306.PubMedGoogle Scholar
  147. 145.
    Terashima T., Ochiishi T., and Yamauchi T. (1994) Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II isoforms in the ganglion cells of the rat retina: immunofluorescence histochemistry combined with a fluorescent retrograde tracer. Brain Res. 650, 133–139.PubMedGoogle Scholar
  148. 146.
    Laabich A. and Cooper N. G. F. (1999) Regulation of calcium/calmodulin-dependent protein kinase II in the adult rat retina is mediated by ionotropic glutamate receptors. Exp. Eye Res. 68, 703–713.PubMedGoogle Scholar
  149. 147.
    Akopian A., Gabriel R., and Witkovsky P. (1999) Calcium released from intracellular stores inhibits GABAA-mediated currents in ganglion cells of the turtle retina. J. Neurophysiol. 80, 1105–1115.Google Scholar
  150. 148.
    Inoue M., Omura Y., Yakushiji T., and Akaike N. (1986) Intracellular Ca ions decrease the affinity of the GABA receptor. Nature 324, 156–158.PubMedGoogle Scholar
  151. 149.
    Mouginot D., Feltz P., and Schlichter R. (1991) Modulation of GABA-gated chloride currents by intracellular calcium in cultured porcine melanotrophs. J. Physiol. (Lond) 394, 501–524.Google Scholar
  152. 150.
    Mulle C., Choquet D., Korn H., and Changoeux J. P. (1992) Calcium influx through nicotinic receptors in rat central neurons: its relevance to cellular regulation. Neuron 8, 135–143.PubMedGoogle Scholar
  153. 151.
    Teyler T. J., Cavus I., Coussens C., DiScenna P., Grover L., Lee Y. P., and Little Z. (1994) Multideterminant role of calcium in hippocampal synaptic plasticity. Hippocampus 4, 623–634.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  1. 1.Department of Ophthalmology, New York University School of MedicineNew York University Medical CenterNew York
  2. 2.Department of Physiology & Neuroscience, New York University School of MedicineNew York University Medical CenterNew York

Personalised recommendations