Molecular Neurobiology

, Volume 21, Issue 1–2, pp 57–82 | Cite as

A neural systems analysis of adaptive navigation

  • Sheri J. Y. Mizumori
  • Brenton G. Cooper
  • Stefan Leutgeb
  • Wayne E. Pratt


In the field of the neurobiology of learning, significant emphasis has been placed on understanding neural plasticity within a single structure (or synapse type) as it relates to a particular type of learning mediated by a particular brain area. To appreciate fully the breadth of the plasticity responsible for complex learning phenomena, it is imperative that we also examine the neural mechanisms of the behavioral instantiation of learned information, how motivational systems interact, and how past memories affect the learning process. To address this issue, we describe a model of complex learning (rodent adaptive navigation) that could be used to study dynamically interactive neural systems. Adaptive navigation depends on the efficient integration of external and internal sensory information with motivational systems to arrive at the most effective cognitive and/or behavioral strategies. We present evidence consistent with the view that during navigation: 1) the limbic thalamus and limbic cortex is primarily responsible for the integration of current and expected sensory information, 2) the hippocampal-septal-hypothalamic system provides a mechanism whereby motivational perspectives bias sensory processing, and 3) the amygdala-prefrontal-striatal circuit allows animals to evaluate the expected reinforcement consequences of context-dependent behavioral responses. Although much remains to be determined regarding the nature of the interactions among neural systems, new insights have emerged regarding the mechanisms that underlie flexible and adaptive behavioral responses.

Index Entries

Navigation spatial learning place cells head direction cells systems analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham W. C. and Bear M. F. (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130.PubMedCrossRefGoogle Scholar
  2. Alheid G. F., de Olmos J. S., and Beltramino C. A. (1995) Amygdala and extended amygdala, in The Rat Nervous System, 2nd ed., Paxinos G., ed., Academic, Australia, pp. 495–578.Google Scholar
  3. Alvarez-Leefmans F. J. and Gardiner-Medwin A. R. (1975) Influences of the septum on the hippocampal dentate area which are unaccompanied by field potentials. J. Physiol. Lond. 249, 14P-16P.Google Scholar
  4. Andersen R. A. (1987) The role of the inferior parietal lobule in spatial perception and visual motor integration, in Handbook of Physiology vol. IV, Plum F., Mountcastle V. B., and Geiger S. R., eds., American Physiology Society, Bethesda, MD, pp. 483–518.Google Scholar
  5. Andersen R. A. (1997) Multimodal integration for the representation of space in the posterior parietal cortex. Phil. Trans. R. Soc. Lond. B 352, 1421–1428.CrossRefGoogle Scholar
  6. Annett L. E., McGregor A., and Robbins T. W. (1989) The effects of ibotenic acid lesions of the nucleus accumbens on spatial learning and extinction in the rat. Behav. Brain Res. 31, 231–242.PubMedCrossRefGoogle Scholar
  7. Assaf S. Y. and Miller J. J. (1978) Neuronal transmission in the dentate gyrus: role of inhibitory mechanisms. Brain Res. 151, 587–592.PubMedCrossRefGoogle Scholar
  8. Barnes C. A., McNaughton B. L., Mizumori S. J. Y., Leonard B. W., Lin L.-H. (1990) Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Prog. Brain. Res. 83, 287–300.PubMedGoogle Scholar
  9. Bilkey D. K. and Goddard G. V. (1985) Medial septal facilitation of hippocampal granule cell activity is mediated by inhibition on inhibitory interneurons. Brain Res. 361, 99–106.PubMedCrossRefGoogle Scholar
  10. Blair H. T. (1996) A thalamocortical circuit for computing directional heading in the rat, in Advances in Neural Information Processing Systems, Vol. 8, Touretzky D. S., Mozer M. C., and Hasselmo M. E., eds., MIT Press, Cambridge, MA, pp. 152–158.Google Scholar
  11. Blair H. T., Cho J., and Sharp P. E. (1998) Role of the lateral mammillary nucleus in the rat head direction circuit: A combined single-unit recording and lesion study. Neuron 21, 1387–1397.PubMedCrossRefGoogle Scholar
  12. Blair H. T., Lipscomb B. W., and Sharp P. E. (1997) Anticipatory time intervals of head-direction cells in the anterior thalamus of the rat: implications for path integration in the head-direction circuit. J. Neurophysiol. 78, 145–159.PubMedCrossRefGoogle Scholar
  13. Blair J. T. and Sharp P. E. (1995) Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction. J. Neurosci. 15, 6260–6270.PubMedGoogle Scholar
  14. Blair J. T. and Sharp P. E. (1996) Visual and vestibular influences on head-direction cells in the anterior thalamus of the rat. Behav. Neurosci. 110, 643–660.PubMedCrossRefGoogle Scholar
  15. Brown M. F. and Bing M. N. (1997) In the dark: Spatial choice when access to spatial cues is restricted. Anim. Learning Behav. 25, 21–30.Google Scholar
  16. Brown M. F. and Moore J. A. (1997) In the dark: spatial choice when access to extrinsic spatial cues is eliminated. Anim. Learning Behav. 25, 335–346.Google Scholar
  17. Chen L. T., Lin L.-H., Green E. J., Barnes C. A., and McNaughton B. L. (1994a) Head direction cells in the rat posterior cortex I. Anatomical distribution and behavioral modulation. Exp. Brain Res. 101, 8–23.PubMedGoogle Scholar
  18. Chen L. T., Lin L.-H., Barnes C. A., and McNaughton B. L. (1994b) Head direction cells in the rat posterior cortex II. Contributions of visual and idiothetic information to the directional firing. Exp. Brain Res. 101, 24–34.PubMedCrossRefGoogle Scholar
  19. Cho J., Yoon K., and Sharp P. E. (1998). Head direction, place and movement correlates of retrosplenial cells in an open field. Soc. Neurosci. Abstr. 24, 1912.Google Scholar
  20. Colby C. L. and Duhamel J. R. (1996) Spatial representations for action in parietal cortex. Cog. Brain Res. 5, 105–115.CrossRefGoogle Scholar
  21. Colby C. L. and Olson C. R. (1999) Spatial cognition, in Fundamental Neuroscience, Zigmond M. J., Bloom F. E., Landis S. C., Roberts J. L., and Squire L. R., eds., Academic, New York, pp. 1363–1383.Google Scholar
  22. Cook D and Kesner R. P. (1988) Caudate nucleus and memory for egocentric localization. Behav. Neural Biol. 49, 332–343.PubMedCrossRefGoogle Scholar
  23. Cooper B. G., Miya D. Y., and Mizumori S. J. Y. (1998) Superior colliculus and active navigation: Role of visual and non-visual cues in controlling cellular representations of space. Hippocampus 8, 340–372.PubMedCrossRefGoogle Scholar
  24. Cooper B. G. and Mizumori S. J. Y. (1999a) Retrosplenial cortex inactivation selectively impairs navigation in darkness. Neuroreport 10, 625–630.PubMedCrossRefGoogle Scholar
  25. Cooper B. G. and Mizumori S. J. Y. (1999b) Temporary inactivation of retrosplenial cortex can result in hippocampal remapping of space. Soc. Neurosci. Abstr. 25, 1383.Google Scholar
  26. Dahl D. and Winson J. (1985) Action of norepinephrine in the dentate gyrus. I. Stimulation of locus coeruleus. Exp. Brain Res. 59, 491–496.PubMedCrossRefGoogle Scholar
  27. Decker M. W., Pelleymounter M. A., and Gallagher M. (1988) Effects of training on a spatial memory task on high affinity choline uptake in the hippocampus and cortex in young adult and aged rats. J. Neurosci. 8, 90–99.PubMedGoogle Scholar
  28. Devan B. D. and White N. M. (1999) Parallel information processing in the dorsal striatum: Relation to hippocampal formation. J. Neurosci. 19, 2789–2798.PubMedGoogle Scholar
  29. Dragoi G., Carpi D., Recce M., Csicsvari J., and Buzsaki G. (1999) Interactions between hippocampus and medial septum during sharp waves and theta oscillations in the behaving rat. J. Neurosci. 19, 6191–6199.PubMedGoogle Scholar
  30. Duhamel J. R., Colby C. L., and Goldberg M. E. (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92.PubMedCrossRefGoogle Scholar
  31. Eichenbaum H. (1996) Is the rodent hippocampus just for "place"? Curr. Opin. Neurobiol. 6, 187–195.PubMedCrossRefGoogle Scholar
  32. Eichenbaum H. (1997) Declarative memory: Insights from cognitive neurobiology. Ann. Rev. Psychol. 48, 547–572.CrossRefGoogle Scholar
  33. Eichenbaum H., Dudchenko P., Wood E., Shapiro M., and Tanila H. (1999) The hippocampus, memory and place cells: is it spatial memory or a memory space? Neuron 23, 209–226.PubMedCrossRefGoogle Scholar
  34. Flaherty A. W. and Graybiel A. M. (1993) Two input systems for body representations in the primate striatal matrix. Experimental evidence in the squirrel monkey. J. Neurosci. 13, 1120-xx.Google Scholar
  35. Floresco S. B., Seamans, J. K., and Phillips A. G. (1996) Differential effects of lidocaine infusions into the ventral CA1/subiculum or the nucleus accumbens on the acquisition and retention of spatial information. Behav. Brain Res. 81, 163–171.PubMedCrossRefGoogle Scholar
  36. Freund T. F. and Antal M. (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 336, 170–173.PubMedCrossRefGoogle Scholar
  37. Freund T. F. and Buzsaki G. (1996) Interneurons of the hippocampus. Hippocampus 6, 347–370.PubMedCrossRefGoogle Scholar
  38. Gal G., Joel D., Gusak O., Feldon J., and Weiner I. (1997) The effects of electrolytic lesion to the shell subterritory of the nucleus accumbens on delayed non-matching-to-sample and four-arm baited eight-arm radial-maze tasks. Behav. Neurosci. 111, 92–103.PubMedCrossRefGoogle Scholar
  39. Galey D., Durkin T., Sifakis G., Kemph E., and Jaffard R. (1985) Facilitation of spontaneous and learned spatial behaviours following 6-hydroxydopamine lesions of the lateral septum: a cholinergic hypothesis. Brain Res. 340, 171–174.PubMedCrossRefGoogle Scholar
  40. Gemmelll C. and O’Mara S. M. (1999) Medial prefrontal cortex lesions cause deficits in a variablegoal location task but not in object exploration. Behav. Neurosci. 113, 465–474.CrossRefGoogle Scholar
  41. Goodridge J. P. and Taube J. S. (1995) Preferential use of the landmark navigational system by head direction cells in rats. Behav. Neurosci. 109, 49–61.PubMedCrossRefGoogle Scholar
  42. Granon S., Hardouin J., Courtiere A., and Poucet B. (1998) Evidence for the involvement of the rat prefrontal cortex in sustained attention. Q. J. Exp. Psychol. 51B, 219–233.Google Scholar
  43. Guazzelli A., Bota M. and Arbib M. A. (1999) TAM-WG: Modeling rodent navigation in corridor and open-field environments. Soc. Neurosci. Abstr. 25, 1624,Google Scholar
  44. Guazzelli A., Corbacho F. J., Bota M., and Arbib M. A. (1998) Affordances, motivations, and the world graph theory. Adaptive Behav. 6, 435–471.CrossRefGoogle Scholar
  45. Harzi M. M. and Jarrard L. E. (1992) Effects of medial and lateral septal lesions on acquisition of a place and cue radial maze task. Behav. Brain Res. 49, 159–165.CrossRefGoogle Scholar
  46. Hatfield T., Han S.-S., Conley M, Gallagher M., and Holland P. (1996) Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavolvian second-order conditioning and reinforcer devaluation effects. J. Neurosci. 16, 5256–5265.PubMedGoogle Scholar
  47. Heterington P. A. and Shapiro M. L. (1997) Hippocampal place fields are altered by the removal of single visual cues in a distance-dependent manner. Behav. Neurosci. 11, 20–34.CrossRefGoogle Scholar
  48. Houk J. C. (1995) Information processing in modular circuits linking basal ganglia and cerebral cortex, in Models of Information Processing in the Basal Ganglia, Houk J. C., Davis, J. L., and Beiser, D. G., eds., MIT Press, Cambridge, MA, pp. 3–10.Google Scholar
  49. Jakab R. L. and Leranth C. (1995) Septum, in The Rat Nervous System, 2nd ed., Paxinos G., ed., Academic, Australia, pp. 405–442.Google Scholar
  50. Jay T. M. and Witter M. P. (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-Leucoagglutinin. J. Comp. Neurol. 313, 574–586.PubMedCrossRefGoogle Scholar
  51. Jeffery K. J. and O’Keefe J. M. (1999) Learned interaction of visual and idiothetic cues in the control of place field orientation. Exp. Brain Res. 127, 151–161.PubMedCrossRefGoogle Scholar
  52. Jog M. S., Kubota Y., Connolly C. E., Hillegaart V., and Graybiel A. M. (1999) Building neural representations of habits. Science 286, 1745–1749.PubMedCrossRefGoogle Scholar
  53. Jung M. W. and McNaughton B. L. (1993) Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3, 165–182.PubMedCrossRefGoogle Scholar
  54. Jung M. W., Qin Y., McNaughton B. L., and Barnes C. A. (1998) Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks. Cereb. Cortex 8, 437–450.PubMedCrossRefGoogle Scholar
  55. Kapp B. S., Frysinger R. C., Gallagher M., and Haselton J. (1979) Amygdala central nucleus lesions: Effects on heart rate conditioning in the rabbit. Physiol. Behav. 23, 1109–1117.PubMedCrossRefGoogle Scholar
  56. Kawagoe R., Takikawa Y., and Hikosaka O. (1998) Expectation of reward modulates cognitive signals in the basal ganglia. Nature Neurosci. 1, 411–416.PubMedCrossRefGoogle Scholar
  57. Kesner, R. P. Memory neurobiology. Encyclopedia of the Human Brain, (in press).Google Scholar
  58. Kesner R. P. (1998) Neurobiological views of memory, in Neurobiology of Learning and Memory, Martinez J. and Kesner R., eds., Academic, New York, pp. 361–416.Google Scholar
  59. Kesner R. P. and Williams, J. M. (1995) Memory for magnitude of reinforcement: dissociation between the amygdala and hippocampus. Neurobiol. Learning Memory 64, 237–244,CrossRefGoogle Scholar
  60. King C., Recce M., and O’Keefe J. (1998) The rhythmicity of cells of the medial septum/diagonal band of Broca in the awake freely moving rat: relationship with behaviour and hippocampal theta. Eur. J. Neurosci. 10, 464–477.PubMedCrossRefGoogle Scholar
  61. Knierim J. J., Kudrimoti H. S., and McNaughton B. L. (1995) Place cells, head direction cells, and the learning of landmark stability. J. Neurosci. 15, 1648–1659.PubMedGoogle Scholar
  62. Knierim J. J., Kudrimoti H. S., and McNaughton B. L. (1998) Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells. J. Neurophysiol. 80, 425–446.PubMedGoogle Scholar
  63. Kubie J. L. and Ranck Jr. J. B. (1983) Sensory-behavioral correlates in individual hippocampus neurons in three situations: space and context, in Neurobiology of the Hippocampus, Seifert W., ed., Academic, New York, pp. 433–447.Google Scholar
  64. Lavoie A. M. and Mizumori S. J. Y. (1994) Spatial, movement, and reward-sensitive discharge by medial ventral striatum neurons of rats. Brain Res. 638, 157–168.PubMedCrossRefGoogle Scholar
  65. LeDoux J. E., Cicchetti P., Xagoraris A., and Romanski L. M. (1990) The lateral amygdaloid nucleus: Sensory interface of the amygdala in fear conditioning. J. Neurosci. 10, 1062–1069.PubMedGoogle Scholar
  66. Leutgeb S. and Mizumori S. J. Y. (1999a) Excitotoxic septal lesions result in spatial memory deficits and altered flexibility of hippocampal single-unit representations. J. Neurosci. 19, 6661–6672.PubMedGoogle Scholar
  67. Leutgeb S. and Mizumori S. J. Y. (1999b) Simultaneous recordings of location selective single-units in the septal nuclei and hippocampus. Soc. Neurosci. Abstr. 25, 1384.Google Scholar
  68. Linden R. and Perry V. H. (1983) Massive retinotectal projection in rats. Brain Res. 272, 145–149.PubMedCrossRefGoogle Scholar
  69. Markus E. J., Barnes C. A., McNaughton B. L., Gladden V. L., and Skaggs W. E. (1994) Spatial information content and reliability of hippocampal CA1 neurons: effects of visual input. Hippocampus, 4, 410–421.PubMedCrossRefGoogle Scholar
  70. Markus E. J., Qin Y. L., Leonard B., Skaggs W. E., McNaughton B. L., and Barnes C. A. (1995) Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 15, 7079–7094.PubMedGoogle Scholar
  71. McDonald R. J. and White N. M. (1993) A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum. Behav. Neurosci. 107, 3–22.PubMedCrossRefGoogle Scholar
  72. McGeorge A. J. and Faull R. L. M. (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neurosci. 29, 503–537.CrossRefGoogle Scholar
  73. McNaughton B. L. Barnes C. A., Gerrard J. L., Gothard K., Jung M. W., Knierim J. J., Kudrimoti H., Qin Y., Skaggs W. E., Suster M. S., and Weaver K. L. (1996) Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J. Exp. Biol. 199, 173–185.PubMedGoogle Scholar
  74. McNaughton B. L. Barnes C. A., and O’Keefe J. (1983) The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely moving rats. Exp. Brain Res. 52, 41–49.PubMedCrossRefGoogle Scholar
  75. McNaughton B. L, Leonard B., and Chen L. L. (1989) Cortico-hippocampal interactions ad cognitive mapping: A hypothesis based on reintegration of the parietal and inferotemporal pathways for visual processing. Psychobiology 17, 236–246.Google Scholar
  76. McNaughton B. L. Mizumori, S. J. Y., Barnes C. A., Leonard, B. J., Marguis M., and Green E. J. (1994) Cortical representation of motion during unrestrained spatial navigation in the rat. Cereb. Cortex 4, 27–39.PubMedCrossRefGoogle Scholar
  77. Meredith M. A. and Stein B. E. (1985) Descending efferents from the superior colliculus relay integrated multisensory information. Science 227, 657–659.PubMedCrossRefGoogle Scholar
  78. Merzenich M. M. and deCharms R. C. (1996) Neural representation, experience, and change, in The Mind-Brain Continuum: Sensory Processes, Llinas R and Churchland P. S., eds., MIT Press, Cambridge, MA, pp. 61–81.Google Scholar
  79. Mizumori S. J. Y. and Kalyani A. (1997) Age and experience-dependent representational reorganization during spatial learning. Neurobiol. Aging 18, 651–659.PubMedCrossRefGoogle Scholar
  80. Mizumori S. J. Y., Lavoie A. M., and Kalyani A. (1996) Redistribution of spatial representation in the hippocampus of aged rats performing a spatial memory task. Behav. Neurosci. 110, 1006–1016.PubMedCrossRefGoogle Scholar
  81. Mizumori S. J. Y., McNaughton B. L., and Barnes C. A. (1989a) A comparison of supramammillary and medial septal influences on hippocampal field potentials and single-unit activity. J. Neurophysiol. 61, 15–31.PubMedGoogle Scholar
  82. Mizumori S. J. Y., McNaughton B. L., Barnes C. A., and Fox K. B. (1989b) Preserved spatial coding in hippocampal CA1 pyramidal cells during reversible suppression of CA3c output: evidence for pattern completion in hippocampus. J. Neurosci. 9, 3915–3928.PubMedGoogle Scholar
  83. Mizumori S. J. Y., Perez G. M., Alvarado M. C., Barnes C. A., and McNaughton B. L. (1990) Reversible inactivation of the medial septum differentially affects two forms of learning in rats. Brain Res. 528, 12–20.PubMedCrossRefGoogle Scholar
  84. Mizumori S. J. Y., Pratt W. E., and Ragozzino K. E. (1999a) Function of the nucleus accumbens within the context of the larger striatal system. Psychobiology 27, 214–224.Google Scholar
  85. Mizumori S. J. Y., Ragozzino K. E., and Cooper B. G., (2000) Location and head direction representation in the dorsal of rats. Psychobiol. 28, 441–462.Google Scholar
  86. Mizumori S. J. Y., Ragozzino K. E., Cooper B. G., and Leutgeb S. (1999b) Hippocampal representational organization and spatial context. Hippocampus, 9, 444–451.PubMedCrossRefGoogle Scholar
  87. Mizumori S. J. Y., Ward K. E., and Lavoie A. M. (1992) Medial septal modulation of entorhinal single unit activity in anesthetized and freely moving rats. Brain Res. 570, 12–20.CrossRefGoogle Scholar
  88. Mizumori S. J. Y. and Williams J. D. (1993) Directionally-selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats. J. Neurosci. 13, 4015–4028.PubMedGoogle Scholar
  89. Morris R. G. M., Garrud P., Rawlins J. M. P., and O’Keefe J. (1982) Place navigation impaired in rats with hippoocampal lesions. Nature 297, 681–683.PubMedCrossRefGoogle Scholar
  90. Muller R. U., Bostock E., Taube J. S., and Kubie J. L. (1994) On the directional firing properties of hippocampal place cells. J. Neurosci. 14, 7235–7251.PubMedGoogle Scholar
  91. Muller R. U. and Kubie J. L. (1987) The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968.PubMedGoogle Scholar
  92. Muller R. U., Stead M., and Pach J. (1996) The hippocampus as a cognitive graph. J. Gen. Physiol. 107, 663–694.PubMedCrossRefGoogle Scholar
  93. Nadel L., Willner J., and Kurz E. M. (1985) Cognitive maps and environmental context, in Context and Learning, Balsam P. and Tomie A., eds., Erlbaum, NJ, Mahwah, pp. 385–406.Google Scholar
  94. O’Keefe J. (1976) Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78–101.PubMedCrossRefGoogle Scholar
  95. O’Keefe J. and Dostrovsky J. (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175.PubMedCrossRefGoogle Scholar
  96. O’Keefe J. and Burgess N. (1996a) Geometric determinants of the place fields of hippocampal neurons. Nature 381, 425–428.PubMedCrossRefGoogle Scholar
  97. O’Keefe J. and Burgess N. (1996b) Spatial and temporal determinants of the hippocampal place cell activity, in Perception, Memory and Emotion: Frontiers in Neuroscience, Ono T., McNaughton B. L., Molotchnikoff S., Rolls E. T., and Nishijo H., eds., Pergamon, New York, pp. 359–373.Google Scholar
  98. O’Keefe J. and Conway D. H. (1978) Hippocampal place units in the freely moving rat: Why they fire where they fire. Exp. Brain Res. 31, 573–590.PubMedCrossRefGoogle Scholar
  99. O’Keefe J. and Nadel L. (1978) The Hippocampus as a Cognitive Map. Oxford, London.Google Scholar
  100. O’Keefe J. and Reece M. L. (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330.PubMedCrossRefGoogle Scholar
  101. O’Keefe J. and Speakman A. (1987) Single unit activity in the rat hippocampus during a spatial memory task. Exp. Brain Res. 68, 1–27.PubMedCrossRefGoogle Scholar
  102. Olton D. S., Becker J. T., and Handelmann G. E. (1979) Hippocampus, space, and memory. Brain Behav. Sci. 2, 313–365.Google Scholar
  103. Olton D. S., Branch M., and Best P. J. (1978) Spatial correlates of hippocampal place activity. Exp. Neurol. 58, 387–409.PubMedCrossRefGoogle Scholar
  104. O’Mara S. M. (1995) Spatially selective firing properties of hippocampal formation neurons in rodents and primates. Prog. Neurobiol. 45, 253–274.PubMedCrossRefGoogle Scholar
  105. Packard M. G. and McGaugh J. L. (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol. Learning Memory 65, 66–72.Google Scholar
  106. Ploeger G. E., Spruijt B. M., and Cools A. R. (1994) Spatial localization in the Morris water maze in rats: Acquisition is affected by intra-accumbens injections of the dopaminergic antagonist haloperidol. Behav. Neurosci. 108, 927–934.PubMedCrossRefGoogle Scholar
  107. Poucet B. (1997) Searching for spatial unit firing in the prelimbic area of the rat medial prefrontal cortex. Behav. Brain Res. 84, 151–159.PubMedCrossRefGoogle Scholar
  108. Poucet B. and Herrmann T. (1990) Septum and medial frontal cortex contributions to spatial problem-solving. Behav. Brain Res. 37, 269–280.PubMedCrossRefGoogle Scholar
  109. Pratt W. E. and Mizumori S. J. Y. (1998a) Characteristics of basolateral amygdala neuronal firing on a spatial memory task involving differential reward. Behav. Neurosci. 112, 554–570.PubMedCrossRefGoogle Scholar
  110. Pratt W. E. and Mizumori S. J. Y. (1998b) Medial prefrontal neuronal responses in rats performing a spatial maze task. Soc. Neurosci. Abstr. 24, 1911.Google Scholar
  111. Quirk G. J., Muller R. U., and Kubie J. L. (1990) The firing of hippocampal place cells in the dark depends on the rat’s recent experience. J. Neurosci. 10, 2008–2017.PubMedGoogle Scholar
  112. Quirk G. J., Muller R. U., Kubie J. L., and Ranck Jr. J. B. (1992) The positional firing properties of medial entorhinal neurons: Description and comparison with hippocampal place cells. J. Neurosci. 12, 1945–1963.PubMedGoogle Scholar
  113. Ragozzino M. E., Adams S., and Kesner R. P. (1998a) Differential involvement of the dorsal anterior cingulate and prelimbic-infralimbic areas of the rodent prefrontal cortex in spatial working memory. Behav. Neurosci. 112, 223–243.CrossRefGoogle Scholar
  114. Ragozzino M. E., Pal S. M. Unick K., Stefani M. R., and Gold P. E. (1998b) Modulation of hippocampal acetylcholine release and of memory by intrahippocampal glucose injections. J. Neurosci. 18, 1595–1601.PubMedGoogle Scholar
  115. Ranck Jr. J. B. (1973) Studies on single neurons in dorsal hippocampus formation and septum in unrestrained rats. Part I. Behavioral correlates and firing repertoires. Exp. Neurol. 41, 461–535.PubMedCrossRefGoogle Scholar
  116. Ranck Jr. J. B. (1984) Head direction cells in the deep layer of dorsal presubiculum in freely moving rats. Soc. Neurosci. Abstr. 10, 599.Google Scholar
  117. Redish A. D. (1999) Beyond the Cognitive Map: From Place Cells to Episodic Memory. MIT Press, Cambridge, MA.Google Scholar
  118. Redish A. D. and Touretzky D. S. (1997) Cognitive maps beyond the hippocampus. Hippocampus 7, 15–35.PubMedCrossRefGoogle Scholar
  119. Risold P. Y. and Swanson L. W. (1995) Structural evidence for functional domains in the rat hippocampus. Science 272, 1484–1486.CrossRefGoogle Scholar
  120. Samsonovich A. and McNaughton B. L. (1997) Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17, 5900–5920.PubMedGoogle Scholar
  121. Save E. (1997) The contribution of visual and intertial mechanisms to navigation in total darkness. Anim. Learning Behav. 25, 324–334.Google Scholar
  122. Schacter D. L. and Tulving E. (1994) Memory Systems 1994. MIT Press, Cambridge, MA.Google Scholar
  123. Schoenbaum G., Chiba A. A., and Gallagher M. (1998) Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neurosci. 1, 155–159.PubMedCrossRefGoogle Scholar
  124. Schultz W. (1997) Dopamine neurons and their role in reward mechanisms. Curr. Opin. Neurobiol. 7, 191–197.PubMedCrossRefGoogle Scholar
  125. Schultz W., Apicella P., Romo R., and Scarnati E. (1995) Context-dependent activity in primate striatum reflecting past and future behavioral events, in Models of Information Processing in the Basal Ganglia, Houk J. C., Davis, J. L., and Beiser, D. G., eds., MIT Press, Cambridge, MA, pp. 11–27.Google Scholar
  126. Seamans J. K., Floresco S. B., and Phillips A. G. (1995) Functional differences between the prelimbic and anterior cingulate regions of the rat prefrontal cortex. Behav. Neurosci. 109, 1063–1073.PubMedCrossRefGoogle Scholar
  127. Sefton A. J. and Dreher B. (1985) Visual system, in The Rat Nervous System, vol. 1, Forebrain and Midbrain, Paxinos G., ed., Academic, Australia, pp. 169–221.Google Scholar
  128. Segal M. (1979) A potent inhibitory monosynaptic hypothalamohippocampal connection. Brain Res. 162, 137–141.PubMedCrossRefGoogle Scholar
  129. Seki M. and Zyo K. (1984) Anterior thalamic afferents from the mammillary body and the limbic cortex in the rat. J. Comp. Neurol. 229, 242–256.PubMedCrossRefGoogle Scholar
  130. Sharp P. E., Blair H. T., and Brown M. (1996) Neural network modeling of the hippocampal formation spatial signals and their possible role in navigation: a modular approach. Hippocampus 6, 735–748.CrossRefGoogle Scholar
  131. Sharp P. E., Blair H. T., Etkin D., and Tzanetos D. B. (1995) Influences of vestibular and visual motion information on the spatial firing patterns of hippocampal place cells. J. Neurosci. 15, 173–189.PubMedGoogle Scholar
  132. Sharp P. E. and Green C. (1994) Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat. J. Neurosci. 14, 2339–2356.PubMedGoogle Scholar
  133. Shibata H. (1992) Topographic organization of subcortical projections to the anterior thalamic nuclei in the rat. J. Comp. Neurol. 323, 117–127.PubMedCrossRefGoogle Scholar
  134. Skaggs W. E., Knierim J. J., Kudrimoti H. S., and McNaughton B. L. (1995) A model of the neural basis of the rat’[???] sense of direction, in Advances in Neural Information Processing Systems, vol. 7, Tesauro G., Touretzky D. S., and Leen T. K., eds., MIT Press, Cambridge, MA, pp. 173–180.Google Scholar
  135. Speakman A. and O’Keefe J. (1990) Hippocampal complex spike cells do not change their place fields if the goal is moved within a cue controlled environment. Eur. J. Neurosci. 14, 2339–2356.Google Scholar
  136. Squire L. R., Knowlton B., and Musen G. (1993) The structure and organization of memory. Ann. Rev. Psychol. 44, 453–495.CrossRefGoogle Scholar
  137. Stackman R. W. and Taube J. S. (1997) Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input. J. Neurosci. 17, 4349–4358.PubMedGoogle Scholar
  138. Stackman R. W. and Taube J. S. (1998) Firing properties of rat lateral mammillary single units: Head direction, head pitch, and angular head velocity. J. Neurosci. 18, 9020–9037.PubMedGoogle Scholar
  139. Stein B. E. and Meredith M. A. (1993) The Merging of the Senses. MIT Press, Cambridge, MA.Google Scholar
  140. Stern E. A., Jaeger D., and Wilson C. J. (1998) Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature 394, 475–478.PubMedCrossRefGoogle Scholar
  141. Sutherland R. G. and Hoesing J. M. (1993) Posterior cingulate cortex and spatial memory: a microlimnology analysis, in Neurobiology of Cingulate Cortex and Limbic Thalamus, Vogt B. A. and Gabriel M., eds., Birkhauser, Boston, pp. 461–477.Google Scholar
  142. Swanson L. W. and Cowan W. M. The connections of the septal region in the raat. J. Comp. Neurol. 186, 621–656.Google Scholar
  143. Takahashi N., Kawamura M., Shiota J., Kasahata N., and Hirayama K. (1997) Pure topographic disorientation due to right retrosplenial lesion. Neurology 49, 464–469.PubMedGoogle Scholar
  144. Tanila H., Shapiro M., Gallagher M., and Eichenbaum H. (1997a) Brain aging: changes in the nature of information coding by the hippocampus. J. Neurosci. 17, 5155–5166.PubMedGoogle Scholar
  145. Tanila H., Sipila P., Shapiro M., and Eichenbaum H. (1997b) Brain aging: impaired coding of novel environmental cues. J. Neurosci. 17, 5167–5174.PubMedGoogle Scholar
  146. Taube J. S. (1995) Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J. Neurosci. 15, 70–86.PubMedGoogle Scholar
  147. Taube J. S. (1998) Head direction cells and the neurophysiological basis for a sense of direction. Progress Neurobiol. 55, 225–256.CrossRefGoogle Scholar
  148. Taube J. S. and Burton H. L. (1995) Head direction cell activity monitored in a novel environment and during a cue conflict situation. J. Neurophysiol. 74, 1953.PubMedGoogle Scholar
  149. Taube J. S., Muller R. U., and Ranck Jr. J. B. (1990a) Head direction cells recorded from the post-subiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10, 420–435.PubMedGoogle Scholar
  150. Taube J. S., Muller R. U., and Ranck Jr. J. B. (1990b) Head direction cells recorded from the postsubiculum in freely moving rats. II Effects of environmental manipulations. J. Neurosci. 10, 436–447.PubMedGoogle Scholar
  151. van Groen T. and Wyss J. M. (1990a) The connections of presubiculum and parasubiculum in the rat. Brain Res. 518, 227–243.PubMedCrossRefGoogle Scholar
  152. van Groen T. and Wyss J. M. (1990b) The postsubicular cortex in the rat: characterization of the fourth region of the subicular cortex and its connections. Brain Res. 529, 165–177.PubMedCrossRefGoogle Scholar
  153. van Groen T. and Wyss J. M. (1990c) Connections of the retrosplenial granular a cortex in the rat. J. Comp. Neurol. 300, 593–606.PubMedCrossRefGoogle Scholar
  154. van Groen T. and Wyss J. M. (1992a) Connections of the retrosplenial dysgranular cortex in the rat. J. Comp. Neurol. 315, 200–216.PubMedCrossRefGoogle Scholar
  155. van Groen T. and Wyss J. M. (1992b) Projections from the laterodorsal nucleus of the thalamus to the limbic and visual cortices in the rat. J. Comp. Neurol. 324, 427–448.PubMedCrossRefGoogle Scholar
  156. van Groen T. and Wyss J. M. (1995) Projections from the anterodorsal and anteroventral nucleus of the thalamus to the limbic cortex of the rat. J. Comp. Neurol. 358, 584–604.PubMedCrossRefGoogle Scholar
  157. Vogt B. A. and Miller M. W. (1983) Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. J. Comp. Neurol. 216, 192–210.PubMedCrossRefGoogle Scholar
  158. Wallenstein G. V., Eichenbaum H., and Hasselmo M. E. (1998) The hippocampus as an associator of discontiguous events. Trends Neurosci. 21, 317–323.PubMedCrossRefGoogle Scholar
  159. Whishaw I. Q., Cassel J.-C., and Jarrard L. E. (1995) Rats with fimbria-fornix lesions display a place response in a swimming pool: a dissociation between getting there and knowing where. J. Neurosci. 15, 5779–5788.PubMedGoogle Scholar
  160. Whishaw I. Q., McKenna J. E., and Maaswinkel H. (1997) Hippocampal lesions and path integration. Curr. Opin. Neurobiol. 7, 228–234.PubMedCrossRefGoogle Scholar
  161. Wiener S. (1993) Spatial and behavioral correlates of striatal neurons in rats performing a self-initiated navigation task. J. Neurosci. 13, 3802–3817.PubMedGoogle Scholar
  162. Wiener S. (1996) Spatial, behavioral and sensory correlates of hippocampal CA1 complex spike cell activity: implications for information processing functions. Prog. Neurobiol. 49, 335–361.PubMedGoogle Scholar
  163. Wiener S. I. And Korshunov V. A. (1995) Place-independent behavioural correlates of hippocampal neurones in rats. NeuroReport 7, 183–188.PubMedGoogle Scholar
  164. Wilson (1995) The contribution of cortical neurons tot he firing pattern of striatal spiny neurons, in Models of Information Processing in the Basal Ganglia, Houk J. C., Davis, J. L., and Beiser, D. G., eds., MIT Press, Cambridge, MA, pp. 29–51.Google Scholar
  165. Wilson M. A. and MxNaughton B. L. (1993) Dynamics of the hippocampal ensemble code for space. Science, 261, 1055–1058.PubMedCrossRefGoogle Scholar
  166. Winson J. (1978) Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science, 201, 160–163.PubMedCrossRefGoogle Scholar
  167. Winson J. (1984) Neuronal transmission through the hippocampus: dependence on behavioral state, in Cortical Integration, Reinoso-Suarez F. and Ajmone-Marsan C., eds., Raven, New York, pp. 131–146.Google Scholar
  168. Wise S. P., Murray E. A., and Gerfen C. R. (1996) The frontal cortex-basal ganglia system in primates. Crit. Rev. Neurobiol. 10, 317–356.PubMedGoogle Scholar
  169. Wyss J. M. and van Groen T. (1994) Connections between the retrosplenial cortex and the hippocampal formation in the rat: a review. Hippocampus 2, 1–12.CrossRefGoogle Scholar
  170. Zhang K. (1996) Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory. J. Neurosci. 16, 2112–2126.PubMedGoogle Scholar
  171. Zhou T. C., Tamura R., Kuriwaki J., and Ono T. (1999) Comparison of medial and lateral septum neuron activity during performance of spatial tasks in rats. Hippocampus 9, 220–234.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • Sheri J. Y. Mizumori
    • 1
    • 2
  • Brenton G. Cooper
    • 1
  • Stefan Leutgeb
    • 2
  • Wayne E. Pratt
    • 1
  1. 1.Department of PsychologyUniversity of UtahSalt Lake City
  2. 2.Neuroscience Program, Psychology DepartmentUniversity of UtahSalt Lake City

Personalised recommendations