Skip to main content
Log in

Mood stabilizers target cellular plasticity and resilience cascades

Implications for the development of novel therapeutics

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Bipolar disorder is a devastating disease with a lifetime incidence of about 1% in the general population. Suicide is the cause of death in 10 to 15% of patients and in addition to suicide, mood disorders are associated with many other harmful health effects. Mood stabilizers are medications used to treat bipolar disorder. In addition to their therapeutic effects for the treatment of acute manic episodes, mood stabilizers are useful as prophylaxis against future episodes and as adjunctive antidepressant medications. The most established and investigated mood-stabilizing drugs are lithium and valproate but other anticonvulsants (such as carbamazepine and lamotrigine) and antipsychotics are also considered as mood stabilizers. Despite the efficacy of these diverse medications, their mechanisms of action remain, to a great extent, unknown. Lithium’s inhibition of some enzymes, such as inositol monophosphatase and gycogen synthase kinase-3, probably results in its mood-stabilizing effects. Valproate may share its anticonvulsant target with its mood-stabilizing target or may act through other mechanisms. It has been shown that lithium, valproate, and/or carbamazepine regulate numerous factors involved in cell survival pathways, including cyclic adenine monophospate response element-binding protein, brain-derived neurotrophic factor, bcl-2, and mitogen-activated protein kinases. These drugs have been suggested to have neurotrophic and neuroprotective properties that ameliorate impairments of cellular plasticity and resilience underlying the pathophysiology of mood disorders. This article also discusses approaches to develop novel treatments specifically for bipolar disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tohen M., Hennen J., Zarate C. M. Jr., et al. (2000) Two-year syndromal and functional recovery in 219 cases of first-episode major affective disorder with psychotic features. Am. J. Psychiatry 157, 220–228.

    Article  PubMed  CAS  Google Scholar 

  2. Benazzi F. (2001) Prevalence and clinical correlates of residual depressive symptoms in bipolar II disorder. Psychother. Psychosom. 70, 232–238.

    Article  PubMed  CAS  Google Scholar 

  3. Keitner G. I., Solomon D. A., Ryan C. E., et al. (1996) Prodromal and residual symptoms in bipolar I disorder. Compr. Psychiatry 37, 362–367.

    Article  PubMed  CAS  Google Scholar 

  4. Gitlin M. J., Swendsen J., Heller T. L., and Hammen C. (1995) Relapse and impairment in bipolar disorder. Am. J. Psychiatry 152, 1635–1640.

    PubMed  CAS  Google Scholar 

  5. Zarate C. A. Jr., Tohen M., Land M., and Cavanagh S. (2000) Functional impairment and cognition in bipolar disorder. Psychiatr. Q. 71, 309–329.

    Article  PubMed  Google Scholar 

  6. MacQueen G. M., Young L. T., and Joffe R. T. (2001) A review of psychosocial outcome in patients with bipolar disorder. Acta. Psychiatr. Scand. 103, 163–170.

    Article  PubMed  CAS  Google Scholar 

  7. Murray C. J. and Lopez A. D. (1997) Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 349, 1498–1504.

    Article  PubMed  CAS  Google Scholar 

  8. Musselman D. L., Evans D. L., and Nemeroff C. B. (1998) The relationship of depression to cardiovascular disease: epidemiology, biology, and treatment. Arch. Gen. Psychiatry 55, 580–592.

    Article  PubMed  CAS  Google Scholar 

  9. Michelson D., Stratakis C., Hill L., et al. (1996) Bone mineral density in women with depression. N. Engl. J. Med. 335, 1176–1181.

    Article  PubMed  CAS  Google Scholar 

  10. Ciechanowski P. S., Katon W. J., and Russo J. E. (2000) Depression and diabetes: impact of depressive symptoms on adherence, function, and costs. Arch. Intern. Med. 160, 3278–3285.

    Article  PubMed  CAS  Google Scholar 

  11. Gould T. D. and Manji H. K. (2002) Signaling networks in the pathophysiology and treatment of mood disorders. J. Psychosom. Res. 53, 687–697.

    Article  PubMed  Google Scholar 

  12. Manji H. K., Bebchuk J. M., Moore G. J., Glitz D., Hasanat K. A., and Chen G. (1999) Modulation of CNS signal transduction pathways and gene expression by mood-stabilizing agents: therapeutic implications. J. Clin. Psychiatry 60, 27–39; discussion 40–21, 113–116.

    PubMed  Google Scholar 

  13. Manji H. K., Chen G., Hsiao J. K., Risby E. D., Masana M. I., and Potter W. Z. (1996) Regulation of signal transduction pathways by mood-stabilizing agents: implications for the delayed onset of therapeutic efficacy. J. Clin. Psychiatry 57, 34–46; discussion 47–38.

    PubMed  CAS  Google Scholar 

  14. Chen G., Manji H. K., Hawver D. B., Wright C. B., and Potter W. Z. (1994) Chronic sodium valproate selectively decreases protein kinase C alpha and epsilon in vitro. J. Neurochem. 63, 2361–2364.

    Article  PubMed  CAS  Google Scholar 

  15. Williams R. S., Cheng L., Mudge A. W., and Harwood A. J. (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 417, 292–295.

    Article  PubMed  CAS  Google Scholar 

  16. Lenox R. H., McNamara R. K., Watterson J. M., and Watson D. G. (1996) Myristoylated alanine-rich C kinase substrate (MARCKS): a molecular target for the therapeutic action of mood stabilizers in the brain? J. Clin. Psychiatry 57, 23–31; discussion 32–33.

    PubMed  CAS  Google Scholar 

  17. Lenox R. H. and Wang L. (2003) Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks. Mol. Psychiatry 8, 135–144.

    Article  PubMed  CAS  Google Scholar 

  18. Coyle J. T. and Duman R. S. (2003) Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 38, 157–160.

    Article  PubMed  CAS  Google Scholar 

  19. Harwood A. J. and Agam G. (2003) Search for a common mechanism of mood stabilizers. Biochem. Pharmacol. 66, 179–189.

    Article  PubMed  CAS  Google Scholar 

  20. Post R. M. (2000) Psychopharmacology of mood stabilizers. In: Schizophrenia and Mood Disorders: The New Drug Therapies in Clinical Practice., Buckley P. F. and Waddington J. L., eds. Oxford: Butterworth-Heinemann, pp. 127–154.

    Google Scholar 

  21. Ryves W. J. and Harwood A. J. (2001) Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem. Biophys. Res. Commun. 280, 720–725.

    Article  PubMed  CAS  Google Scholar 

  22. Davies S. P., Reddy H., Caivano M., and Cohen P. (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105.

    Article  PubMed  CAS  Google Scholar 

  23. Amari L., Layden B., Rong Q., Geraldes C. F., and Mota de Freitas D. (1999) Comparison of fluorescence, (31)P NMR, and (7)Li NMR spectroscopic methods for investigating Li(+)/Mg(2+) competition for biomolecules. Anal. Biochem. 272, 1–7.

    Article  PubMed  CAS  Google Scholar 

  24. York J. D., Ponder J. W. and Majerus P. W. (1995) Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc. Natl. Acad. Sci. USA 92, 5149–5153.

    Article  PubMed  CAS  Google Scholar 

  25. Masuda C. A., Xavier M. A., Mattos K. A., Galina A., and Montero-Lomeli M. (2001) Phosphoglucomutase is an in vivo lithium target in yeast. J. Biol. Chem. 10, 10.

    Google Scholar 

  26. Kajda P. K. and Birch N. J. (1981) Lithium inhibition of phosphofructokinase. J. Inorg. Biochem. 14, 275–278.

    Article  PubMed  CAS  Google Scholar 

  27. Klein P. S. and Melton D. A. (1996) A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA 93, 8455–8459.

    Article  PubMed  CAS  Google Scholar 

  28. Johannessen C. U. (2000) Mechanisms of action of valproate: a commentatory. Neurochem. Int. 37, 103–110.

    Article  PubMed  CAS  Google Scholar 

  29. van der Laan J. W., de Boer T., and Bruinvels J. (1979) Di-n-propylacetate and GABA degradation. Preferential inhibition of succinic semialdehyde dehydrogenase and indirect inhibition of GABA-transaminase. J. Neurochem. 32, 1769–1780.

    Article  PubMed  Google Scholar 

  30. Sawaya M. C., Horton R. W., and Meldrum B. S. (1975) Effects of anticonvulsant drugs on the cerebral enzymes metabolizing GABA. Epilepsia 16, 649–655.

    PubMed  CAS  Google Scholar 

  31. Whittle S. R. and Turner A. J. (1978) Effects of the anticonvulsant sodium valproate on gamma-aminobutyrate and aldehyde metabolism in ox brain. J. Neurochem. 31, 1453–1459.

    Article  PubMed  CAS  Google Scholar 

  32. Anlezark G. M., Horton R. W., Meldrum B. S., Sawaya M. C., and Stephenson J. D. (1976) Proceedings: gamma-aminobutyric acid metabolism and the anticonvulsant action of ethanolamine-o-sulphate and di-n-propylacetate. Br. J. Pharmacol. 56, 383P,384P.

  33. Gottlicher M., Minucci S., Zhu P., et al. (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. Embo. J. 20, 6969–6978.

    Article  PubMed  CAS  Google Scholar 

  34. Tremolizzo L., Carboni G., Ruzicka W. B., et al. (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc. Natl. Acad. Sci. USA 99, 17,095–17,100.

    Article  CAS  Google Scholar 

  35. Yildirim E., Zhang Z., Uz T., Chen C. Q., Manev R., and Manev H. (2003) Valproate administration to mice increases histone acetylation and 5-lipoxygenase content in the hippocampus. Neurosci. Lett. 345, 141–143.

    Article  PubMed  CAS  Google Scholar 

  36. Gould T. D., Chen G., and Manji H. K. (2003) In Vivo Evidence in the Brain for Lithium Inhibition of Glycogen Synthease Kinase-3. In Neuropsychopharmacology.

  37. Bourne H. R. and Nicoll R. (1993) Molecular machines integrate coincident synaptic signals. Cell 72(Suppl), 65–75.

    Article  PubMed  Google Scholar 

  38. Bhalla U. S. and Iyengar R. (1999) Emergent properties of networks of biological signaling pathways. Science 283, 381–387.

    Article  PubMed  CAS  Google Scholar 

  39. Weng G., Bhalla U. S., and Iyengar R. (1999) Complexity in biological signaling systems. Science 284, 92–96.

    Article  PubMed  CAS  Google Scholar 

  40. Manji H. K. (1992) G proteins: implications for psychiatry. Am. J. Psychiatry 149, 746–760.

    PubMed  CAS  Google Scholar 

  41. Szabo S. T., Gould T. D., and Manji H. K. (2003) Introduction to neurotransmitters, receptors, signal transduction, and second messengers. In: Textbook of Psychopharmacology, Nemeroff C., ed. Arlington, VA: American Psychiatric Publishing, pp. 3–52.

    Google Scholar 

  42. Rasenick M. M., Chaney K. A., and Chen J. (1996) G protein-mediated signal transduction as a target of antidepressant and antibipolar drug action: evidence from model systems. J. Clin. Psychiatry 57, 49–55; discussion 56–58.

    PubMed  CAS  Google Scholar 

  43. Berridge M. J., Downes C. P., and Hanley M. R. (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59, 411–419.

    Article  PubMed  CAS  Google Scholar 

  44. Allison J. H., Blisner M. E., Holland W. H., Hipps P. P., and Sherman W. R. (1976) Increased brain myo-inositol 1-phosphate in lithium-treated rats. Biochem. Biophys. Res. Commun. 71, 664–670.

    Article  PubMed  CAS  Google Scholar 

  45. Allison J. H. and Stewart M. A. (1971) Reduced brain inositol in lithium-treated rats. Nat. New Biol. 233, 267,268.

    Article  PubMed  CAS  Google Scholar 

  46. Hallcher L. M. and Sherman W. R. (1980) The effects of lithium ion and other agents on the activity of myo- inositol-1-phosphatase from bovine brain. J. Biol. Chem. 255, 10,896–10,901.

    CAS  Google Scholar 

  47. Naccarato W. F., Ray R. E., and Wells W. W. (1974) Biosynthesis of myo-inositol in rat mammary gland. Isolation and properties of the enzymes. Arch. Biochem. Biophys. 164, 194–201.

    Article  PubMed  CAS  Google Scholar 

  48. Berridge M. J., Downes C. P., and Hanley M. R. (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587–595.

    PubMed  CAS  Google Scholar 

  49. Manji H. K. and Lenox R. H. (1999) Ziskind-Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol. Psychiatry 46, 1328–1351.

    Article  PubMed  CAS  Google Scholar 

  50. Manji H. K., Bersudsky Y., Chen G., Belmaker R. H., and Potter W. Z. (1996) Modulation of protein kinase C isozymes and substrates by lithium: the role of myo-inositol. Neuropsychopharmacology 15, 370–381.

    Article  PubMed  CAS  Google Scholar 

  51. Manji H. K., Etcheberrigaray R., Chen G., and Olds J. L. (1993) Lithium decreases membrane-associated protein kinase C in hippocampus: selectivity for the alpha isozyme. J. Neurochem. 61, 2303–2310.

    Article  PubMed  CAS  Google Scholar 

  52. Leli U. and Hauser G. (1992) Lithium modifies diacylglycerol levels and protein kinase C in neuroblastoma cells. Abstracts of the 8th international conference on second messengers and phosphoproteins, Z187F.

  53. Li X. and Jope R. S. (1995) Selective inhibition of the expression of signal transduction proteins by lithium in nerve growth factor-differentiated PC12 cells. J. Neurochem. 65, 2500–2508.

    Article  PubMed  CAS  Google Scholar 

  54. Lenox R. H., Watson D. G., Patel J., and Ellis J. (1992) Chronic lithium administration alters a prominent PKC substrate in rat hippocampus. Brain. Res. 570, 333–340.

    Article  PubMed  CAS  Google Scholar 

  55. Watson D. G. and Lenox R. H. (1996) Chronic lithium-induced down-regulation of MARCKS in immortalized hippocampal cells: potentiation by muscarinic receptor activation. J. Neurochem. 67, 767–777.

    Article  PubMed  CAS  Google Scholar 

  56. Watson D. G., Watterson J. M., and Lenox R. H. (1998) Sodium valproate down-regulates the myristoylated alanine-rich C kinase substrate (MARCKS) in immortalized hippocampal cells: a property of protein kinase C-mediated mood stabilizers. J. Pharmacol. Exp. Ther. 285, 307–316.

    PubMed  CAS  Google Scholar 

  57. Fibiger H. C. (1995) Neurobiology of depression: focus on dopamine. Adv. Biochem. Psychopharmacol. 49, 1–17.

    PubMed  CAS  Google Scholar 

  58. Goodwin F. K. and Jamison K. R. (1990) Manic-Depressive Illness. New York: Oxford University Press.

    Google Scholar 

  59. Einat H., Yuan P., Gould T. D., et al. (2003) The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J. Neurosci. 23, 7311–7316.

    PubMed  CAS  Google Scholar 

  60. Nestler E. J., Gould E., Manji H., et al. (2002) Preclinical models: status of basic research in depression. Biol. Psychiatry 52, 503–528.

    Article  PubMed  Google Scholar 

  61. Giambalvo C. T. (1992) Protein kinase C and dopamine transport—2. Effects of amphetamine in vitro. Neuropharmacology 31, 1211–1222.

    Article  PubMed  CAS  Google Scholar 

  62. Gnegy M. E., Hong P., and Ferrell S. T. (1993) Phosphorylation of neuromodulin in rat striatum after acute and repeated, intermittent amphetamine. Brain. Res. Mol. Brain Res. 20, 289–298.

    Article  PubMed  CAS  Google Scholar 

  63. Iwata S., Hewlett G. H., and Gnegy M. E. (1997) Amphetamine increases the phosphorylation of neuromodulin and synapsin I in rat striatal synaptosomes. Synapse 26, 281–291.

    Article  PubMed  CAS  Google Scholar 

  64. Iwata S. I., Hewlett G. H., Ferrell S. T., Kantor L., and Gnegy M. E. (1997) Enhanced dopamine release and phosphorylation of synapsin I and neuromodulin in striatal synaptosomes after repeated amphetamine. J. Pharmacol. Exp. Ther. 283, 1445–1452.

    PubMed  CAS  Google Scholar 

  65. Birnbaum S. G., Yuan P. X., Wang M., et al. (2004) Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science 306, 882–884.

    Article  PubMed  CAS  Google Scholar 

  66. Moore G. J., Bebchuk J. M., Parrish J. K., et al. (1999) Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am. J. Psychiatry 156, 1902–1908.

    PubMed  CAS  Google Scholar 

  67. Hahn C. G. and Friedman E. (1999) Abnormalities in protein kinase C signaling and the pathophysiology of bipolar disorder. Bipolar Disord. 1, 81–86.

    Article  PubMed  CAS  Google Scholar 

  68. Friedman E., Hoau Yan W., Levinson D., Connell T. A., and Singh H. (1993) Altered platelet protein kinase C activity in bipolar affective disorder, manic episode. Biol. Psychiatry 33, 520–525.

    Article  PubMed  CAS  Google Scholar 

  69. Wang H. Y. and Friedman E. (1996) Enhanced protein kinase C activity and translocation in bipolar affective disorder brains. Biol. Psychiatry 40, 568–575.

    Article  PubMed  CAS  Google Scholar 

  70. Kao K. R., Masui Y., and Elinson R. P. (1986) Lithium-induced respecification of pattern in Xenopus-laevis embryos. Nature 322, 371–373.

    Article  CAS  PubMed  Google Scholar 

  71. He X., Saint-Jeannet J. P., Woodgett J. R., Varmus H. E., and Dawid I. B. (1995) Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374, 617–622.

    Article  PubMed  CAS  Google Scholar 

  72. Klein P. S. and Melton D. A. (1996) A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA 93, 8455–8459.

    Article  PubMed  CAS  Google Scholar 

  73. Stambolic C., Ruel L., and Woodgett J. R. (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 6, 1664–1668.

    Article  PubMed  CAS  Google Scholar 

  74. Gurvich N. and Klein P. S. (2002) Lithium and valproic acid: parallels and contrasts in diverse signaling contexts. Pharmacol. Ther. 96, 45–66.

    Article  PubMed  CAS  Google Scholar 

  75. O’Brien W. T., Harper A. D., Jove F., et al. (2004) Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J. Neurosci. 24, 6791–6798.

    Article  PubMed  CAS  Google Scholar 

  76. Phiel C. J., Wilson C. A., Lee V. M., and Klein P. S. (2003) GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature 423, 435–439.

    Article  PubMed  CAS  Google Scholar 

  77. Chalecka-Franaszek E. and Chuang D. M. (1999) Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc. Natl. Acad. Sci. USA 96, 8745–8750.

    Article  PubMed  CAS  Google Scholar 

  78. Zhang F., Phiel C. J., Spece L., Gurvich N., and Klein P. S. (2003) Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J. Biol. Chem. 278, 33,067–33,077.

    CAS  Google Scholar 

  79. Kirshenboim N., Plotkin B., Shlomo S. B., Kaidanovich-Beilin O., and Eldar-Finkelman H. (2004) Lithium-mediated phosphorylation of glycogen synthase kinase-3b involves PI3 kinase-dependent activation of protein kinase C-alpha. J. Mol. Neurosci. 24, 237–245.

    Article  PubMed  CAS  Google Scholar 

  80. Frame S. and Cohen P. (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359, 1–16.

    Article  PubMed  CAS  Google Scholar 

  81. Gould T. D., Zarate C. A. J., and Manji H. K. Glycogen synthase kinase-3: a target for novel bipolar disorder treatments. J. Clin. Psychiatry, in press.

  82. Woodgett J. R. (2001) Judging a protein by more than its name: gsk-3. STKE 2001, RE12.

  83. Gould T. D and Manji H. K. (2002) The wnt signaling pathway in bipolar disorder. Neuroscientist 8, 497–511.

    PubMed  CAS  Google Scholar 

  84. Lenox R. H., Gould T. D., and Manji H. K. (2002) Endophenotypes in bipolar disorder. Am. J. Med. Genet. 114, 391–406.

    Article  PubMed  Google Scholar 

  85. Jope R. S. and Bijur G. N. (2002) Mood stabilizers, glycogen synthase kinase-3beta and cell survival. Mol. Psychiatry 7(Suppl 1), S35-S45.

    Article  PubMed  CAS  Google Scholar 

  86. Manji H. K., Moore G. J., and Chen G. (1999) Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol. Psychiatry 46, 929–940.

    Article  PubMed  CAS  Google Scholar 

  87. Kaidanovich-Beilin O., Milman A., Weizman A., Pick C. G., and Eldar-Finkelman H. (2004) Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biol. Psychiatry 55, 781–784.

    Article  PubMed  CAS  Google Scholar 

  88. Gould T. D., Einat H., Bhat R., and Manji H. K. (2004) AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int. J. Neuropsychopharmacol. 1–4.

  89. Li X., Zhu W., Roh M. S., Friedman A. B., Rosborough K., and Jope R. S. (2004) In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology 29, 1426–1431.

    Article  PubMed  CAS  Google Scholar 

  90. Beaulieu J. M., Sotnikova T. D., Yao W. D., et al. (2004) Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc. Natl. Acad. Sci. USA 101, 5099–5104.

    Article  PubMed  CAS  Google Scholar 

  91. Phiel C. J. and Klein P. S. (2001) Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 41, 789–813.

    Article  PubMed  CAS  Google Scholar 

  92. Phiel C. J., Zhang F., Huang E. Y., Guenther M. G., Lazar M. A., and Klein P. S. (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276, 36,734–36,741.

    CAS  Google Scholar 

  93. Chen G., Huang L. D., Jiang Y. M., and Manji H. K. (1999) The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J. Neurochem. 72, 1327–1330.

    Article  PubMed  CAS  Google Scholar 

  94. Hall A. C., Brennan A., Goold R. G., et al. (2002) Valproate Regulates GSK-3-Mediated Axonal Remodeling and Synapsin I Clustering in Developing Neurons. Mol. Cell Neurosci. 20, 257–270.

    Article  PubMed  CAS  Google Scholar 

  95. Li X., Bijur G. N., and Jope R. S. (2002) Glycogen synthase kinase 3-beta, mood stabilizers, and neuroprotection. Bipolar Disorders 4, 137–144.

    Article  PubMed  CAS  Google Scholar 

  96. Grimes A. C. and Jope R. S. (2001) CREB DNA binding activity is inhibited by glycogen synthase kinase-3beta and facilitated by lithium. J. Neurochem. 78, 1–15.

    Article  Google Scholar 

  97. Sheline Y. I. (2003) Neuroimaging studies of mood disorder effects on the brain. Biol. Psychiatry 54, 338–352.

    Article  PubMed  Google Scholar 

  98. Drevets W. C. (2000) Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog. Brain. Res. 126, 413–431.

    Article  PubMed  CAS  Google Scholar 

  99. Manji H. K., Drevets W. C., and Charney D. S. (2001) The cellular neurobiology of depression. Nat. Med. 7, 541–547.

    Article  PubMed  CAS  Google Scholar 

  100. Drevets W. C. (2003) Neuroimaging abnormalities in the amygdala in mood disorders. Ann. N. Y. Acad. Sci. 985, 420–444.

    Article  PubMed  Google Scholar 

  101. Manji H. K. and Duman R. S. (2001) Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol. Bull. 35, 5–49.

    PubMed  CAS  Google Scholar 

  102. Drevets W. C. (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr. Opin. Neurobiol. 11, 240–249.

    Article  PubMed  CAS  Google Scholar 

  103. Strakowski S. M., Adler C. M., and DelBello M. P. (2002) tric MRI studies of mood disorders: do they distinguish unipolar and bipolar disorder? Bipolar Disord. 4, 80–88.

    Article  PubMed  Google Scholar 

  104. Beyer J. L. and Krishnan K. R. (2002) tric brain imaging findings in mood disorders. Bipolar Disorders 4, 89–104.

    Article  PubMed  Google Scholar 

  105. Cotter D., Mackay D., Landau S., Kerwin R., and Everall I. (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch. Gen. Psychiatry 58, 545–553.

    Article  PubMed  CAS  Google Scholar 

  106. Rajkowska G. (2002) Cell pathology in bipolar disorder. Bipolar Disord 4, 129–116.

    Article  Google Scholar 

  107. Soares J. C. and Mann J. J. (1997) The anatomy of mood disorders—review of structural neuroimaging studies. Biol. Psychiatry 41, 86–106.

    Article  PubMed  CAS  Google Scholar 

  108. Stoll A. L., Renshaw P. F., Yurgelun-Todd D. A., and Cohen B. M. (2000) Neuroimaging in bipolar disorder: what have we learned? Biol. Psychiatry 48, 505–517.

    Article  PubMed  CAS  Google Scholar 

  109. Kessler R. C. (1997) The effects of stressful life events on depression. Annu. Rev. Psychol. 48, 191–214.

    Article  PubMed  CAS  Google Scholar 

  110. McEwen B. S. (1999) Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22, 105–122.

    Article  PubMed  CAS  Google Scholar 

  111. Lee A. L., Ogle W. O., and Sapolsky R. M. (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disorders 4, 117–128.

    Article  PubMed  CAS  Google Scholar 

  112. Sapolsky R. M. (2001) Depression, antidepressants, and the shrinking hippocampus. Proc. Natl. Acad. Sci. USA 98, 12,320–12,322.

    Article  CAS  Google Scholar 

  113. Sapolsky R. M. (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch. Gen. Psychiatry 57, 925–935.

    Article  PubMed  CAS  Google Scholar 

  114. Malberg J. E. and Duman R. S. (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28, 1562–1571.

    Article  PubMed  CAS  Google Scholar 

  115. Pham K., Nacher J., Hof P. R., and McEwen B. S. (2003) Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur. J. Neurosci. 17, 879–886.

    Article  PubMed  Google Scholar 

  116. Gould E., Tanapat P., Rydel T., and Hastings N. (2000) Regulation of hippocampal neurogenesis in adulthood. Biol. Psychiatry 48, 715–720.

    Article  PubMed  CAS  Google Scholar 

  117. Bhat R. V., Shanley J., Correll M. P., et al. (2000) Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc. Natl. Acad. Sci. USA 97, 11,074–11,079.

    Article  CAS  Google Scholar 

  118. Cimarosti H., Rodnight R., Tavares A., et al. (2001) An investigation of the neuroprotective effect of lithium in organotypic slice cultures of rat hippocampus exposed to oxygen and glucose deprivation. Neurosci. Lett. 315, 33–36.

    Article  PubMed  CAS  Google Scholar 

  119. D’Mello S. R., Anelli R., and Calissano P. (1994) Lithium induces apoptosis in immature cerebellar granule cells but promotes survival of mature neurons. Exp. Cell. Res. 211, 332–338.

    Article  PubMed  CAS  Google Scholar 

  120. Khodorov B., Pinelis V., Vinskaya N., Sorokina E., Grigortsevich N., and Storozhevykh T. (1999) Li+ protects nerve cells against destabilization of Ca2+ homeostasis and delayed death caused by removal of external Na+. FEBS Lett. 448, 173–176.

    Article  PubMed  CAS  Google Scholar 

  121. Nonaka S., Hough C. J., and Chuang D. M. (1998) Chronic lithium treatment robustyl protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx. Proc. Natl. Acad. Sci. USA 95, 2642–2647.

    Article  PubMed  CAS  Google Scholar 

  122. Hashimoto R., Hough C., Nakazawa T., Yamamoto T., and Chuang D. M. (2002) Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J. Neurochem. 80, 589–597.

    Article  PubMed  CAS  Google Scholar 

  123. Kanai H., Chalecka-Franaszek E., Chen R. W., Hashimoto R., Hiroi T., and Chuang D. M. (2001) Valproic acid protects against glutamate-induced excitotoxicity in mature cerebellar granule cells. Society for Neuroscience Annual Meeting Abstract 94.18.

  124. Chen R. W. and Chuang D. M. (1999) Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J. Biol. Chem. 274, 6039–6042.

    Article  PubMed  CAS  Google Scholar 

  125. Centeno F., Mora A., Fuentes J. M., Soler G., and Claro E. (1998) Partial lithium-associated protection against apoptosis induced by C2-ceramide in cerebellar granule neurons. Neuroreport 9, 4199–4203.

    Article  PubMed  CAS  Google Scholar 

  126. Nonaka S., Katsube N., and Chuang D. M. (1998) Lithium protects rat cerebellar granule cells against apoptosis induced by anticonvulsants, phenytoin and carbamazepine. J. Pharmacol. Exp. Ther. 286, 539–547.

    PubMed  CAS  Google Scholar 

  127. Jeong M. R., Hashimoto R., Senatorov V. V., et al. (2003) Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Lett. 542, 74–78.

    Article  PubMed  CAS  Google Scholar 

  128. Alvarez G., Munoz-Montano J. R., Satrustegui J., Avila J., Bogonez E., and Diaz-Nido J. (1999) Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration. FEBS Lett. 453, 260–264.

    Article  PubMed  CAS  Google Scholar 

  129. Chuang D. M., Chen R., Chalecka-Franaszek E., et al. (2002) Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disorders 4, 129–136.

    Article  PubMed  CAS  Google Scholar 

  130. Chen G., Zeng W. Z., Yuan P. X., et al. (1999) The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J. Neurochem. 72, 879–882.

    Article  PubMed  CAS  Google Scholar 

  131. Nonaka S. and Chuang D. M. (1998) Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats. Neuroreport 9, 2081–2084.

    Article  PubMed  CAS  Google Scholar 

  132. Ren M., Senatorov V. V., Chen R. W., and Chuang D. M. (2003) Postinsult treatment with lithium reduces brain damage and facilitates neurological recovery in a rat ischemia/reperfusion model. Proc. Natl. Acad. Sci. USA 100, 6210–6215.

    Article  PubMed  CAS  Google Scholar 

  133. Ren M., Leng Y., Jeong M. R., Leeds P., and Chuang D. M. (2004) Valproaic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J. Neurochem. 89, 1358–1367.

    Article  PubMed  CAS  Google Scholar 

  134. Wei H., Qin Z. H., Senatorov V. V., et al. (2001) Lithium suppresses excitotoxicity-induced striatal lesions in a rat model of Huntington’s disease. Neuroscience 106, 603–612.

    Article  PubMed  CAS  Google Scholar 

  135. Cameron H. A., Hazel T. G., and McKay R. D. (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J. Neurobiol. 36, 287–306.

    Article  PubMed  CAS  Google Scholar 

  136. Gage F. H. (2000) Mammalian neural stem cells. Science 287, 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  137. Jacobs B. L. (2002) Adult brain neurogenesis and depression. Brain. Behav. Immun. 16, 602–609.

    Article  PubMed  CAS  Google Scholar 

  138. Jacobs B. L., Praag H., and Gage F. H. (2000) Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol. Psychiatry 5, 262–269.

    Article  PubMed  CAS  Google Scholar 

  139. Magavi S. S. and Macklis J. D. (2001) Manipulation of neural precursors in situ: induction of neurogenesis in the neocortex of adult mice. Neuropsychopharmacology 25, 816–835.

    Article  PubMed  CAS  Google Scholar 

  140. Duman R. S., Nakagawa S., and Malberg J. (2001) Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 25, 836–844.

    Article  PubMed  CAS  Google Scholar 

  141. Malberg J. E., Eisch A. J., Nestler E. J., and Duman R. S. (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9110.

    PubMed  CAS  Google Scholar 

  142. Manev H., Uz T., Smalheiser N. R., and Manev R. (2001) Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur. J. Pharmacol. 411, 67–70.

    Article  PubMed  CAS  Google Scholar 

  143. Santarelli L., Saxe M., Gross C., et al. (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809.

    Article  PubMed  CAS  Google Scholar 

  144. Hashimoto R., Senatorov V., Kanai H., Leeds P., and Chuang D. M. (2003) Lithium stimulates progenitor proliferation in cultured brain neurons. Neuroscience 117, 55–61.

    Article  PubMed  CAS  Google Scholar 

  145. Chen G., Rajkowska G., Du F., Seraji-Bozorgzad N., and Manji H. K. (2000) Enhancement of hippocampal neurogenesis by lithium. J. Neurochem. 75, 1729–1734.

    Article  PubMed  CAS  Google Scholar 

  146. Hao Y., Creson T., Zhang L., et al. (2004) Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J. Neurosci. 24, 6590–6599.

    Article  PubMed  CAS  Google Scholar 

  147. McAllister A. K. (2002) Neurotrophins and cortical development. Results Probl. Cell. Differ. 39, 89–112.

    PubMed  CAS  Google Scholar 

  148. McAllister A. K., Katz L. C., and Lo D. C. (1999) Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318.

    Article  PubMed  CAS  Google Scholar 

  149. McAllister A. K. (2001) Neurotrophins and neuronal differentiation in the central nervous system. Cell. Mol. Life Sci. 58, 1054–1060.

    Article  PubMed  CAS  Google Scholar 

  150. Rasmusson A. M., Shi L., and Duman R. (2002) Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology 27, 133–142.

    Article  PubMed  CAS  Google Scholar 

  151. Smith M. A. and Cizza G. (1996) Stress-induced changes in brain-derived neurotrophic factor expression are attenuated in aged Fischer 344/N rats. Neurobiol. Aging 17, 859–864.

    Article  PubMed  CAS  Google Scholar 

  152. Ueyama T., Kawai Y., Nemoto K., Sekimoto M., Tone S., and Senba E. (1997) Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci. Res. 28, 103–110.

    Article  PubMed  CAS  Google Scholar 

  153. Smith M. A., Makino S., Kvetnansky R., and Post R. M. (1995) Effects of stress on neurotrophic factor expression in the rat brain. Ann. NY Acad. Sci. 771, 234–239.

    Article  PubMed  CAS  Google Scholar 

  154. Nibuya M., Morinobu S., and Duman R. S. (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 15, 7539–7547.

    PubMed  CAS  Google Scholar 

  155. Chen B., Dowlatshahi D., MacQueen G. M., Wang J. F., and Young L. T. (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol. Psychiatry 50, 260–265.

    Article  PubMed  CAS  Google Scholar 

  156. Shirayama Y., Chen A. C., Nakagawa S., Russell D. S., and Duman R. S. (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22, 3251–3261.

    PubMed  CAS  Google Scholar 

  157. Fukumoto T., Morinobu S., Okamoto Y., Kagaya A., and Yamawaki S. (2001) Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology (Berl) 158, 100–106.

    Article  CAS  Google Scholar 

  158. Hashimoto R., Takei N., Shimazu K., Christ L., Lu B., and Chuang D. M. (2002) Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology 43, 1173–1179.

    Article  PubMed  CAS  Google Scholar 

  159. Yu I. T., Kim J. S., Lee S. H., Lee Y. S., and Son H. (2003) Chronic lithium enhances hippocampal long-term potentiation, but not neurogenesis, in the aged rat dentate gyrus. Biochem. Biophys. Res. Commun. 303, 1193–1198.

    Article  PubMed  CAS  Google Scholar 

  160. Son H., Yu I. T., Hwang S. J., et al. (2003) Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus. J. Neurochem. 85, 872–881.

    Article  PubMed  CAS  Google Scholar 

  161. Schlessinger J. (2000) Cell signaling by receptor tyrosine kinases. Cell 103, 211–225.

    Article  PubMed  CAS  Google Scholar 

  162. Poo M. M. (2001) Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24–32.

    Article  PubMed  CAS  Google Scholar 

  163. Patapoutian A. and Reichardt L. F. (2001) Trk receptors: mediators of neurotrophin action. Curr. Opin. Neurobiol. 11, 272–280.

    Article  PubMed  CAS  Google Scholar 

  164. Yuan P. X., Huang L. D., Jiang Y. M., Gutkind J. S., Manji H. K., and Chen G. (2001) The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J. Biol. Chem. 276, 31,674–31,683.

    CAS  Google Scholar 

  165. Manji H. K., Moore G. J., Rajkowska G., and Chen G. (2000) Neuroplasticity and cellular resilience in mood disorders. Mol. Psychiatry 5, 578–593.

    Article  PubMed  CAS  Google Scholar 

  166. Huang X., Wu D. Y., Chen G., Manji H., and Chen D. F. (2003) Support of retinal ganglion cell survival and axon regeneration by lithium through a Bcl-2-dependent mechanism. Invest. Ophthalmol. Vis. Sci. 44, 347–354.

    Article  PubMed  Google Scholar 

  167. Quiroz J., Singh J., Gould T. D., Denicoff K. D., Zarate C. A., and Manji H. K. (2004) Emerging experimental therapeutics for bipolar disorder: clues from the molecular pathophysiology. Mol. Psychiatry. 9, 734–755.

    Article  PubMed  CAS  Google Scholar 

  168. De Sarno P., Li X., and Jope R. S. (2002) Regulation of Akt and glycogen synthase kinase-3beta phosphorylation by sodium valproate and lithium. Neuropharmacology 43, 1158–1164.

    Article  PubMed  Google Scholar 

  169. Kato T. and Kato N. (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord. 2, 180–190.

    Article  PubMed  CAS  Google Scholar 

  170. Tseng W. P. and Lin-Shiau S. Y. (2002) Long-term lithium treatment prevents neurotoxic effects of beta-bungarotoxin in primary cultured neurons. J. Neurosci. Res. 69, 633–641.

    Article  PubMed  CAS  Google Scholar 

  171. Wang J. F., Azzam J. E., and Young L. T. (2003) Valproate inhibits oxidative damage to lipid and protein in primary cultured rat cerebrocortical cells. Neuroscience 116, 485–489.

    Article  PubMed  CAS  Google Scholar 

  172. Pivovarova N. B., Pozzo-Miller L. D., Hongpaisan J., and Andrews S. B. (2002) Correlated calcium uptake and release by mitochondria and endoplasmic reticulum of CA3 hippocampal dendrites after afferent synaptic stimulation. J. Neurosci. 22, 10,653–10,661.

    CAS  Google Scholar 

  173. Williams J. M., Thompson V. L., Mason-Parker S. E., Abraham W. C., and Tate W. P. (1998) Synaptic activity-dependent modulation of mitochondrial gene expression in the rat hippocampus. Brain. Res. Mol. Brain Res. 60, 50–56.

    Article  PubMed  CAS  Google Scholar 

  174. Mattson M. P. and Liu D. (2003) Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem. Biophys. Res. Commun. 304, 539–549.

    Article  PubMed  CAS  Google Scholar 

  175. Murphy A. N., Bredesen D. E., Cortopassi G., Wang E., and Fiskum G. (1996) Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria. Proc. Natl. Acad. Sci. USA 93, 9893–9898.

    Article  PubMed  CAS  Google Scholar 

  176. Duchen M. R. (2000) Mitochondria and Ca(2+)in cell physiology and pathophysiology. Cell Calcium 28, 339–348.

    Article  PubMed  CAS  Google Scholar 

  177. Hoshi M., Sato M., Kondo S., et al. (1995) Different localization of tau protein kinase I/glycogen synthase kinase-3 beta from glycogen synthase kinase-3 alpha in cerebellum mitochondria. J. Biochem. (Tokyo) 118, 683–685.

    CAS  Google Scholar 

  178. King T. D., Bijur G. N., and Jope R. S. (2001) Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium. Brain. Res. 919, 106–114.

    Article  PubMed  CAS  Google Scholar 

  179. Dumont P., Leu J. I., Della Pietra A. C. 3rd, George D. L., and Murphy M. (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet. 33, 357–365.

    Article  PubMed  CAS  Google Scholar 

  180. Marchenko N. D., Zaika A., and Moll U. M. (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16,202–16,212.

    Article  CAS  Google Scholar 

  181. Sansome C., Zaika A., Marchenko N. D., and Moll U. M. (2001) Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett. 488, 110–115.

    Article  PubMed  CAS  Google Scholar 

  182. Watcharasit P., Bijur G. N., Song L., Zhu J., Chen X., and Jope R. S. (2003) Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J. Biol. Chem. 278, 48,872–48,879.

    Article  CAS  Google Scholar 

  183. Bijur G. N. and Jope R. S. (2003) Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J. Neurochem. 87, 1427–1435.

    Article  PubMed  CAS  Google Scholar 

  184. Linseman D. A., Butts B. D., Precht T. A., et al. (2004) Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J. Neurosci. 24, 9993–10,002.

    Article  PubMed  CAS  Google Scholar 

  185. Moore G. J., Bebchuk J. M., Hasanat K., et al. (2000) Lithium increases N-acetyl-aspartate in the human brain: in vivo evidence in support of bcl-2’s neurotrophic effects? Biol. Psychiatry 48, 1–8.

    Article  PubMed  CAS  Google Scholar 

  186. Moore G. J., Bebchuk J. M., Wilds I. B., Chen G., and Manji H. K. (2000) Lithium-induced increase in human brain grey matter. Lancet 356, 1241,1242.

    Article  PubMed  CAS  Google Scholar 

  187. Silverstone P. H., Wu R. H., O’Donnell T., Ulrich M., Asghar S. J., and Hanstock C. C. (2003) Chronic treatment with lithium, but not sodium valproate, increases cortical N-acetylaspartate concentrations in euthymic bipolar patients. Int. Clin. Psychopharmacol. 18, 73–79.

    Article  PubMed  Google Scholar 

  188. Sassi R., Nicoletti M., Brambilla P., et al. (2002) Increased gray matter in lithium-treated bipolar disorder patients. Neurosci. Lett. 329, 243.

    Article  PubMed  CAS  Google Scholar 

  189. Atack J. R. (1997) Inositol monophosphatase inhibitors—lithium mimetics? Med. Res. Rev. 17, 215–224.

    Article  PubMed  CAS  Google Scholar 

  190. Atack J. R., Cook S. M., Watt A. P., Fletcher S. R., and Ragan C. I. (1993) In vitro and in vivo inhibition of inositol monophosphatase by the bisphosphonate L-690,330. J. Neurochem. 60, 652–658.

    Article  PubMed  CAS  Google Scholar 

  191. Atack J. R., Prior A. M., Fletcher S. R., Quirk K., McKernan R., and Ragan C. I. (1994) Effects of L-690,488, a prodrug of the bisphosphonate inositol monophosphatase inhibitor L-690,330, on phosphatidylinositol cycle markers. J. Pharmacol. Exp. Ther. 270, 70–76.

    PubMed  CAS  Google Scholar 

  192. Pollack S. J., Atack J. R., Knowles M. R., et al. (1994) Mechanism of inositol monophosphatase, the putative target of lithium therapy. Proc. Natl. Acad. Sci. USA 91, 5766–5770.

    Article  PubMed  CAS  Google Scholar 

  193. Bone R., Springer J. P., and Atack J. R. (1992) Structure of inositol monophosphatase, the putative target of lithium therapy. Proc. Natl. Acad. Sci. USA 89, 10,031–10,035.

    Article  CAS  Google Scholar 

  194. Chen S. J., Sweatt J. D., and Klann E. (1997) Enhanced phosphorylation of the postsynaptic protein kinase C substrate RC3/neurogranin during long-term potentiation. Brain. Res. 749, 181–187.

    Article  PubMed  CAS  Google Scholar 

  195. Conn P. J. and Sweatt J. D. (1994) Protein kinase C in the nervous system. In: Protein Kinase C, Kuo J. F., ed. New York: Oxford University Press, pp. 199–235.

    Google Scholar 

  196. Manji H. K. and Chen G. (2002) PKC, MAP kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers. Mol. Psychiatry 7 (Suppl 1), S46-S56.

    Article  PubMed  CAS  Google Scholar 

  197. Bebchuk J. M., Arfken C. L., Dolan-Manji S., Murphy J., Hasanat K., and Manji H. K. (2000) A preliminary investigation of a protein kinase C inhibitor in the treatment of acute mania. Arch. Gen. Psychiatry 57, 95–97.

    Article  PubMed  CAS  Google Scholar 

  198. Horgan K., Cooke E., Hallett M. B., and Mansel R. E. (1986) Inhibition of protein kinase C mediated signal transduction by tamoxifen. Importance for antitumour activity. Biochem. Pharmacol. 35, 4463–4465.

    Article  PubMed  CAS  Google Scholar 

  199. O’Brian C. A., Housey G. M., and Weinstein I. B. (1988) Specific and direct binding of protein kinase C to an immobilized tamoxifen analogue. Cancer Res. 48, 3626–3629.

    PubMed  CAS  Google Scholar 

  200. Frank R. N. (2002) Potential new medical therapies for diabetic retinopathy: protein kinase C inhibitors. Am. J. Ophthalmol. 133, 693–698.

    Article  PubMed  CAS  Google Scholar 

  201. Wheeler G. D. (2003) Ruboxistaurin (Eli Lilly). IDrugs 6, 159–163.

    PubMed  CAS  Google Scholar 

  202. Aiello L. P. (2002) The potential role of PKC beta in diabetic retinopathy and macular edema. Surv. Ophthalmol. 47 (Suppl 2), S263-S269.

    Article  PubMed  Google Scholar 

  203. Parker P. J. (1999) Inhibition of protein kinase C—do we, can we, and should we? Pharmacol. Ther. 82, 263–267.

    Article  PubMed  CAS  Google Scholar 

  204. Kaidanovich O. and Eldar-Finkelman H. (2002) The role of glycogen synthase kinase-3 in insulin resistance and Type 2 diabetes. Expert Opin. Ther. Targets 6, 555–561.

    Article  PubMed  CAS  Google Scholar 

  205. Bhat R. V. and Budd S. L. (2002) GSK3beta signalling: casting a wide net in Alzheimer’s disease. Neurosignals 11, 251–261.

    Article  PubMed  CAS  Google Scholar 

  206. Alvarez G., Munoz-Montano J. R., Satrustegui J., Avila J., Bogonez E., and Diaz-Nido J. (2002) Regulation of tau phosphorylation and protection against beta-amyloid-induced neurodegeneration by lithium. Possible implications for Alzheimer’s disease. Bipolar Disord. 4, 153–165.

    Article  PubMed  CAS  Google Scholar 

  207. Sun X., Sato S., Murayama O., et al. (2002) Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein C100. Neurosci. Lett. 321, 61–64.

    Article  PubMed  CAS  Google Scholar 

  208. Tong H., Imahashi K., Steenbergen C., and Murphy E. (2002) Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase—dependent pathway is cardioprotective. Circ. Res. 90, 377–379.

    Article  PubMed  CAS  Google Scholar 

  209. Frame S. and Cohen P. (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359, 1–16.

    Article  PubMed  CAS  Google Scholar 

  210. Sasaki C., Hayashi T., Zhang W. R., et al. (2001) Different expression of glycogen synthase kinase-3beta between young and old rat brains after transient middle cerebral artery occlusion. Neurol. Res. 23, 588–592.

    Article  PubMed  CAS  Google Scholar 

  211. Dorronsoro I., Castro A., and Martinez A. (2002) Inhibitors of glycogen synthase kinase-3: future therapy for unmet medical needs. Expert Opin. Ther. Patents 12, 1527–1536.

    Article  CAS  Google Scholar 

  212. Martinez A., Alonso M., Castro A., Perez C., and Moreno F. J. (2002) First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem. 45, 1292–1299.

    Article  PubMed  CAS  Google Scholar 

  213. Plotkin B., Kaidanovich O., Talior I., and Eldar-Finkelman H. (2003) Insulin mimetic action of synthetic phosphorylated Peptide inhibitors of glycogen synthase kinase-3. J. Pharmacol. Exp. Ther. 305, 974–980.

    Article  PubMed  CAS  Google Scholar 

  214. Martinez A., Castro A., Dorronsoro I., and Alonso M. (2002) Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med. Res. Rev. 22, 373–384.

    Article  PubMed  CAS  Google Scholar 

  215. Cohen P. and Frame S. (2001) The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2, 769–776.

    Article  PubMed  CAS  Google Scholar 

  216. Ilouz R., Kaidanovich O., Gurwitz D., and Eldar-Finkelman H. (2002) Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem. Biophys. Res. Commun. 295, 102–106.

    Article  PubMed  CAS  Google Scholar 

  217. D’Sa C. and Duman R. (2002) Antidepressants and neuroplasticity. Bipolar Disorder 4, 183.

    Article  CAS  Google Scholar 

  218. Manji H. K., Quiroz J. A., Sporn J., et al. (2003) Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol. Psychiatry 53, 707–742.

    Article  PubMed  CAS  Google Scholar 

  219. Zeller E., Stief H. J., Pflug B., and Sastre-y-Hernandez M. (1984) Results of a phase II study of the antidepressant effect of rolipram. Pharmacopsychiatry 17, 188–190.

    PubMed  CAS  Google Scholar 

  220. Bobon D., Breulet M., Gerard-Vandenhove M. A., et al. (1988) Is phosphodiesterase inhibition a new mechanism of antidepressant action? A double blind double-dummy study between rolipram and desipramine in hospitalized major and/or endogenous depressives. Eur. Arch. Psychiatry. Neurol. Sci. 238, 2–6.

    Article  PubMed  CAS  Google Scholar 

  221. Hebenstreit G. F., Fellerer K., Fichte K., et al. (1989) Rolipram in major depressive disorder: results of a double-blind comparative study with imipramine. Pharmacopsychiatry 22, 156–160.

    PubMed  CAS  Google Scholar 

  222. Zhu J., Mix E., and Winblad B. (2001) The antidepressant and antiinflammatory effects of rolipram in the central nervous system. CNS Drug. Rev. 7, 387–398.

    Article  PubMed  CAS  Google Scholar 

  223. Marks P., Rifkind R. A., Richon V. M., Breslow R., Miller T., and Kelly W. K. (2001) Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer. 1, 194–202.

    Article  PubMed  CAS  Google Scholar 

  224. Ketter T. A. and Wang P. W. (2003) The emerging differential roles of GABAergic and antiglutamatergic agents in bipolar disorders. J. Clin. Psychiatry 64(Suppl 3), 15–20.

    PubMed  CAS  Google Scholar 

  225. Plotsky P. M., Owens M. J., and Nemeroff C. B. (1998) Psychoneuroendocrinology of depression. Hypothalamic-pituitary-adrenal axis. Psychiatr. Clin. North. Am. 21, 293–307.

    Article  PubMed  CAS  Google Scholar 

  226. Gold P. W. and Chrousos G. P. (2002) Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol. Psychiatry 7, 254–275.

    Article  PubMed  CAS  Google Scholar 

  227. Seymour P. A., Schmidt A. W., and Schulz D. W. (2003) The pharmacology of CP-154,526, a non-peptide antagonist of the CRH1 receptor: a review. CNS Drug Rev. 9, 57–96.

    Article  PubMed  CAS  Google Scholar 

  228. Mansbach R. S., Brooks E. N., and Chen Y. L. (1997) Antidepressant-like effects of CP-154,526, a selective CRF1 receptor antagonist. Eur. J. Pharmacol. 323, 21–26.

    Article  PubMed  CAS  Google Scholar 

  229. Miner J. N., Tyree C., Hu J., et al. (2003) A non-steroidal glucocorticoid receptor antagonist. Mol. Endocrinol. 17, 117–127.

    Article  PubMed  CAS  Google Scholar 

  230. Honer C., Nam K., Fink C., et al. (2003) Glucocorticoid receptor antagonism by cyproterone acetate and RU486. Mol. Pharmacol. 63, 1012–1020.

    Article  PubMed  CAS  Google Scholar 

  231. Ur E., Turner T. H., Goodwin T. J., Grossman A., and Besser G. M. (1992) Mania in association with hydrocortisone replacement for Addison’s disease. Postgrad. Med. J. 68, 41–43.

    Article  PubMed  CAS  Google Scholar 

  232. Salek F. S., Bigos K. L., and Kroboth P. D. (2002) The influence of hormones and pharmaceutical agents on DHEA and DHEA-S concentrations: a review of clinical studies. J. Clin. Pharmacol. 42, 247–266.

    Article  PubMed  CAS  Google Scholar 

  233. Zarate C. A., Quiroz J., Payne J., and Manji H. K. (2002) Modulators of the glutamatergic system: implications for the development of improved therapeutics in mood disorders. Psychopharmacol. Bull. 36, 35–83.

    PubMed  Google Scholar 

  234. Einat H., Manji H. K., and Belmater R. H. (2003) New approaches to modeling bipolar disorder. Psychopharm. Bull. 37, 47–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husseini K. Manji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachmann, R.F., Schloesser, R.J., Gould, T.D. et al. Mood stabilizers target cellular plasticity and resilience cascades. Mol Neurobiol 32, 173–202 (2005). https://doi.org/10.1385/MN:32:2:173

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:32:2:173

Index Entries

Navigation