Skip to main content
Log in

Environmental toxins and α-synuclein in Parkinson’s disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In recent years, environmental influences have been thought to play an important role in Parkinson’s disease (PD). Evidence from epidemiological investigations suggests that environmental factors might take part in the disease process. Intriguingly, most of environmental toxins share the common mechanism of causing mitochondria dysfunction by inhibiting complex I and promoting α-synuclein aggregation, a key factor in PD. Therefore, understanding the mechanism of interactions between α-synuclein and environmental factors could lead to new therapeutic approaches to PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goedert M. (2001) Alpha-synuclein and neurodegenerative diseases. Neuroscience 2, 492–501.

    PubMed  CAS  Google Scholar 

  2. Dawson T.M. and Dawson V.L. (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302, 819–822.

    Article  PubMed  CAS  Google Scholar 

  3. Collier K.S., Maries E., and Kordower J.H. (2002) Etiology of Parkinson’s disease: genetics and environment revisited. PNAS 99, 13,972–13,974.

    Article  CAS  Google Scholar 

  4. Warner T.T. and Schapira A.H.V. (2003) Genetic and environmental factors in the cause of Parkinson’s disease. Ann. Neurol. 53 (Suppl. 3), s16-s25.

    Article  PubMed  CAS  Google Scholar 

  5. Manning Bog A.B., McCormack A.L., Li J., Uversky B.N., Fink A.L., and Di Monte D.A. (2002) The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice. J. Biol. Chem. 277, 1641–1644.

    Article  PubMed  CAS  Google Scholar 

  6. Isacson O. (2002) Models of repair mechanisms for future treatment modalities of Parkinson’s disease. Brain Res. Bull. 57, 839–846.

    Article  PubMed  CAS  Google Scholar 

  7. Dauer W., Kholodilov N., Vila M., et al. (2002) Resistance of α-synuclein null mice to the Parkinsonian neurotoxin MPTP. Proc. Natl. Acad. Sci. USA 99, 14,524–14,529.

    Article  CAS  Google Scholar 

  8. Wang H. M., Shimoji M., Yu S. W., Dawson T. M., and Dawson V. (2003) Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson’s disease. Ann. NY Acad. Sci. 991, 132–139.

    Article  PubMed  CAS  Google Scholar 

  9. Beal M.F. (2003) Mitochondria, Oxidative Damage, and Inflammation in Parkinson’s disease. Ann. NY Acad. Sci. 991, 120–131.

    Article  PubMed  CAS  Google Scholar 

  10. Collier T.J., Collier K.S., McGuire S., and Sortwell C.E. (2003) Cellular models to study dopaminergic injury responses. Ann. NY Acad. Sci. 991, 140–151.

    Article  PubMed  CAS  Google Scholar 

  11. Sherer T. B., Kim J. H., Betarbet R., and Greennmyre J.T. (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp. Neurol. 179, 9–16.

    Article  PubMed  CAS  Google Scholar 

  12. Brunk U.T. and Terman A. (2002) The mitochon-drial-lysosomal axis theory of aging accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 269, 1996–2002.

    Article  PubMed  CAS  Google Scholar 

  13. Orth M., Tabrizi S.J., Schapira A.H.V., and Cooper J.M. (2003) α-Synuclein expression in HEK293 cells enhances the mitochondrial sensitive to rotenone. Neurosci. Lett. 351, 29–32.

    Article  PubMed  CAS  Google Scholar 

  14. Betarbet R., Sherer T.B., Di Monte D.A., and Greenamyre J.T. (2002) Mechanistic approaches to Parkinson’s disease pathogenesis. Brain Pathol. 12, 499–510.

    Article  PubMed  CAS  Google Scholar 

  15. Kathleen A., Grire-Zeiss M.A., and Federoff H.J. (2003) Convergent pathobiologic model of Parkinson’s disease. Ann. NY Acad. Sci. 991, 152–166.

    Google Scholar 

  16. Gómez-Santos C., Ferrer I., Reiriz J., Vinals F., Barrachina M., and Ambrosio S. (2002) MPP+ increases α-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells. Brain Res. 935, 32–39.

    Article  PubMed  Google Scholar 

  17. Mc Naught K.S.P. and Olanow C. (2003) Proteolytic stress: a unifying concept for the etiopathogenesis of Parkinson’s disease. Ann. Neurol. 53,(Suppl. 3), s73-s86.

    Article  CAS  Google Scholar 

  18. Cookson M.R. (2003) Pathways to parkinsonism. Neuron 37, 7–10.

    Article  PubMed  CAS  Google Scholar 

  19. Seo J.H., Rah J.C., Choi S.H., et al. (2002) α-Synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J. 16, 1826–1829.

    PubMed  CAS  Google Scholar 

  20. George J.M. (2001) The synucleins. Genome Biol. 3, 3002.1–3002.6.

    Article  Google Scholar 

  21. Ma Q.L., Chan P., Yoshii M., and Uéda K. (2003) α-Synuclein aggregation and neurodegenerative disease. J. Alzheimer’s Dis. 5, 139–148.

    CAS  Google Scholar 

  22. Yu X., Tsunao S., Uéda K., et al. (2001) Characterization of the human α-synuclein gene: genomic structure, transcription start site, promoter region and polymorphisms. J. Alzheimer’s Dis. 3, 485–494.

    Google Scholar 

  23. Lücking C.B. and Brice A. (2000) Alpha-synuclein and Parkinson’s disease. Cell. Mol. Life Sci. 57, 1894–1908.

    Article  PubMed  Google Scholar 

  24. Paxinou E., Chen Q., Giasson Bi W.M., et al. (2001) Induction of alpha-synuclein aggregation by intracellular nitrative insult. J. Neurosci. 21, 8053–8061.

    PubMed  CAS  Google Scholar 

  25. Iseki E., Marui W., Sawada H., Uéda K., and Kosaka K. (2000) Accumulation of human α-synuclein in different cytoskeletons in Lewy bodies in brain of dementia with lewy bodies. Neurosci. Lett. 290, 41–44.

    Article  PubMed  CAS  Google Scholar 

  26. Saha A.R., Hill J., Utton M.A., et al. (2004) Parkinson’s disease (alpha-synuclein) mutations exhibit defective axonal transport in cultured neurons. J. Cell Sci. 117, 1017–1024.

    Article  PubMed  CAS  Google Scholar 

  27. Bianco C.L., Ridet J.L., Schneider B.L., Déglon N., and Aebischer P. (2002) α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. PNAS 99, 10,813–10,818.

    Article  CAS  Google Scholar 

  28. Abeliovich A., Schmitz Y., Farinas I., et al. (2000) Mice Lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252.

    Article  PubMed  CAS  Google Scholar 

  29. Goerts J., Manning-Bog A.B., Cormack A.L.M., et al. (2003) Nuclear localization of α-synuclein and its interaction with histones. Biochemistry 42, 8465–8471.

    Article  CAS  Google Scholar 

  30. Alim M.A., Hossain M.S., Arima K., et al. (2002) Tubulin seeds α-synuclein fibril formation. J. Biol. Chem. 277, 2112–2117.

    Article  PubMed  CAS  Google Scholar 

  31. Neystat M., Rzhetskaya M., Holodilov N., and Burke R.E. (2002) Analysis of synphilin-1 and synuclein interactions by yeast two-hybrid β-galactosidase liquid assay. Neurosci. Lett. 325, 119–123.

    Article  PubMed  CAS  Google Scholar 

  32. Duda J.E., Lee V.M.Y., and Trojanowski J. (2000) Neuropathology of α-synuclein aggregates new insights into mechanisms of neurodegenerative disease. J. Neurosci. Res. 61, 121–127.

    Article  PubMed  CAS  Google Scholar 

  33. Saha A.R., Ninkin N.N., Hanger D.P., and Bham D.A. (2000) Induction of neuronal death by alpha-synuclein. Eur. J. Neurosci. 12, 3073–3077.

    Article  PubMed  CAS  Google Scholar 

  34. Conway K.A., Lee S.J., Rochet J.C., et al. (2000) Acceleration of oligomerization not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA 97, 571–576.

    Article  PubMed  CAS  Google Scholar 

  35. Spira P.J., Sharpe D.M., Halliday G., Cavanagh J., and Nicholson G.A. (2001) Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr alpha-synuclein mutation. Ann. Neurol. 149, 313–319.

    Article  Google Scholar 

  36. Giasson B.I., Duda J.E., Quinn A.M., Zhang B., Trojanowski J.Q., and Lee V.M. (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein Neuron 34, 521–523.

    Article  PubMed  CAS  Google Scholar 

  37. Cristina G.S., Ferrer I., Santidrian A.F., and Barrachina M. (2003) Dopamine induces autophagic cell death and α-synuclein increase in human neuroblastoma SH-SY5Y cells. J. Neurosci. Res. 73, 341–350.

    Article  CAS  Google Scholar 

  38. Hashimoto M., Rockenstein E., and Masliaii E. (2003) Transgenic models of α-synuclein Pathology past present, and future. Ann. NY Acad. Sci. 991, 171–188.

    Article  PubMed  CAS  Google Scholar 

  39. Dawson T.M., Mandir A.S., and Lee M.K. (2002) Animal models of PD: pieces of the same puzzle? Neuron 35, 219–212.

    Article  PubMed  CAS  Google Scholar 

  40. Feany M.B. and Bendera W.W. (2000) Drosophila model of Parkinson’s disease. Nature 404, 394–398.

    Article  PubMed  CAS  Google Scholar 

  41. Sherer T.B., Betarbet R., Stout A.K., et al. (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered α-synuclein metabolism and oxidative damage. J. Neurosci. 22, 7006–7015.

    PubMed  CAS  Google Scholar 

  42. Uversky V.N., Li J., and Fink A.L. (2001) Pesticides directly accelerate the rate of α-synuclein fibril formation: a possible factor in Parkinson’s disease. FEBS Lett. 500, 105–108.

    Article  PubMed  CAS  Google Scholar 

  43. Masliah E., Rockenstein E., Veinbergs I., et al. (2000) Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269.

    Article  PubMed  CAS  Google Scholar 

  44. Kostrzewa R.M. and Juan S.A. (2003) Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. Neurotox. Res. 5, 375–384.

    Article  PubMed  Google Scholar 

  45. Betarbet R., Sherer T.B., Mackenzie G., Caucica-Osuna M., Panov A.V., and Greenamgre J.T. (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci. 3, 1301–1306.

    Article  PubMed  CAS  Google Scholar 

  46. Orth M. and Schapira A.H.V. (2002) Mitochondrial involvement in Parkinson’s disease. Neurochem. Int. 40, 533–541.

    Article  PubMed  CAS  Google Scholar 

  47. Vila M., Vukosavic S., Jackson L.V., Neystat M., Jakowec M., and Przedborski S. (2000) α-Synuclein up-regulation in substantia nigra of dopaminergic neurons following administration of the Parkinsonian toxin MPTP. J. Neurochem. 74, 721–729.

    Article  PubMed  CAS  Google Scholar 

  48. Lim K.L., Dawson V., and Dawson T.M. (2003) The cast of molecular characters in Parkinson’s disease. Ann. NY Acad. Sci. 991, 80–92.

    Article  PubMed  CAS  Google Scholar 

  49. Loo G.V., Saelens X., Gurp M.V., Farlane M.M., Martin S.J., and Vandenabeele P. (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ. 9, 1031–1042.

    Article  PubMed  CAS  Google Scholar 

  50. Ameisen J.C. (2004) Looking for death at the core of life in the light of evolution. Cell Death Differ. 11, 4–10.

    Article  PubMed  CAS  Google Scholar 

  51. Tatton W.G., Ruth C.R., Brown D., and Tatton N. (2003) Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann. Neurol. 53(Suppl. 3), s61-s72.

    Article  PubMed  CAS  Google Scholar 

  52. Hsu L.J., Sagara Y., Arroyo A., et al. (2000) α-Synuclein promotes mitochondrial deficit and oxidative stress. Am. J. Pathol. 2, 401–410.

    Google Scholar 

  53. Hashimoto M., Takeda A., Hsu L.J., Takenouchi T., and Masliah E. (1999) Role of cytochrome c as a stimulator of α-synuclein aggregation in lewy body disease. J. Biol. Chem. 274, 28,849–28,852.

    CAS  Google Scholar 

  54. Yuan J.Y., Lipinski M., and Degterev A. (2003) Diversity in the mechanisms of neuronal cell death. Neuron 40, 401–413.

    Article  PubMed  CAS  Google Scholar 

  55. Webb J.L., Ravikumar B., Atkins J., Skepper J.N., and Rubinsztein D.C. (2003) α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25,009–25,013.

    CAS  Google Scholar 

  56. Stefanis L., Larsen K.E., Rideout H.J., Sulzer D., and Greene L.A. (2001) Expression of A53T mutant but not wild-type alpha-synuclein in PC 12 cells induces alterations of the ubiquitin-dependent degradation system loss of dopamine release and autophagic cell death. J. Neurosci. 21, 9549–9560.

    PubMed  CAS  Google Scholar 

  57. Xu J., Kao S.Y., Lee F.J.S., Song W.H., Jin L.W., and Yonkner B.A. (2002) Dopamine dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson’s disease. Nat. Med. 8, 600–606.

    Article  PubMed  CAS  Google Scholar 

  58. Manning-Bog A. B., McCormack A.L., Purisai M.G., Bolin L.M., and Di Monte D.A. (2003) α-Synuclein overexpression protects against paraquat-induced neurodegeneration. J. Neurosci. 23, 3095–3099.

    PubMed  CAS  Google Scholar 

  59. Rathke-Hartlieb S., Hahle P.J., Neumann M., et al. (2001) Sensitivity to MPTP is not increased in Parkinson’s disease-associated mutant α-synuclein transgenic mice. J. Neurochem. 77, 1181–1184.

    Article  PubMed  CAS  Google Scholar 

  60. Zhang Y.X., Yang H., Cai Q., et al. (2003) The influence of overexpression α-synuclein EGFP on formation of inclusion and mitochondrial ultrastructure in SH-SY5Y cells in vitro. Chin. J. Neuroanal. 19, 251–256.

    CAS  Google Scholar 

  61. Dacosta C.A., Ancolio K., and Checler F. (2000) Wild type but not Parkinson’s disease-related ala-53-Thr mutant α-synuclein protects neuronal cells from apoptotic stimuli. J. Biol. Chem. 275, 24,065–24,069.

    CAS  Google Scholar 

  62. Taylor J.P., Hardy J., and Fischbeck K.H. (2002) Toxic proteins in neurodegenerative disease. Science 14, 1991–1995.

    Article  Google Scholar 

  63. Singleton A.B., Farrer M., Johnson J., et al. (2003) α-synuclein locus triplication causes Parkinson’s disease. Science 302, 841.

    Article  PubMed  CAS  Google Scholar 

  64. Saleh A., Srinivasula S.M., Balkir L., Robbins P.D., and Alnemri E.S. (2000) Negative regulation of the Apaf-1 apoptosis by Hsp 70. Nat. Cell Biol. 2, 476–483.

    Article  PubMed  CAS  Google Scholar 

  65. Ravagnan L., Gurbuxani S., Susin S.A., et al. (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat. Cell Biol. 3, 839–843.

    Article  PubMed  CAS  Google Scholar 

  66. Auluck P.K., Edwin Chan H.Y., Trojanowski J.Q., Lee V.M.-Y., and Bonini N.M. (2002) Chaperonne suppression of α-synuclein toxicity in a drosophila model for Parkinson’s disease. Science 295, 865–868.

    Article  PubMed  CAS  Google Scholar 

  67. Hashimoto M., Hsu L.J., Rockenstain E., Takenouchi T., Mallory M., and Masliah E. (2002) α-synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. J. Biol. Chem. 277, 11,465–11,472.

    CAS  Google Scholar 

  68. Tanaka Y.I., Engelender S., Igarashi S., et al. (2001) Inducible expression of mutant α-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum. Mol. Genet. 10, 919–926.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Yang, H. Environmental toxins and α-synuclein in Parkinson’s disease. Mol Neurobiol 31, 273–282 (2005). https://doi.org/10.1385/MN:31:1-3:273

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:31:1-3:273

Index Entries

Navigation