Skip to main content
Log in

Calcium and retinal function

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We survey the primary roles of calcium in retinal function, including photoreceptor transduction, transmitter release by different classes of retinal neuron, calcium-mediated regulation of gap-junctional conductance, activation of certain voltage-gated channels for K+ and C1, and modulation of postsynaptic potentials in retinal ganglion cells. We discuss three mechanisms for changing [Ca2+]i, which include flux through voltage-gated calcium channels, through ligand-gated channels, and by release from stores. The neuromodulatory pathways affecting each of these routes of entry are considered. The many neuromodulatory mechanisms in which calcium is a player are described and their effects upon retinal function discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pugh E. N., Jr. and Lamb T. D. (2000) Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation, in Handbook of Biological Physics, vol. 3 (Stavenga D. G., DeGrip W. J., and Pugh E. N. Jr., eds), Elsevier, Amsterdam pp. 183–255.

    Google Scholar 

  2. Cohen A. I. (1972) Rods and cones, in Sensory Physiology, vol. VII/2 (Fuortes M. G. F., ed.), Springer-Verlag, Berlin, pp. 63–110.

    Google Scholar 

  3. Owen W. G. (1987) Ionic conductances in rod photoreceptors. Ann. Rev. Physiol. 49, 743–764.

    CAS  Google Scholar 

  4. Haynes L. W., Kay A. R., and Yau K-W. (1986) Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane. Nature 321, 66–70.

    PubMed  CAS  Google Scholar 

  5. Zimmerman A. L. and Baylor D. A. (1986) Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores. Nature 321, 70–2.

    PubMed  CAS  Google Scholar 

  6. Yau K. W. and Nakatani K. (1984) Electrogenic Na-Ca exchange in retinal rod outer segment. Nature 311, 661–663.

    PubMed  CAS  Google Scholar 

  7. Koch K. W., Lambrecht H. G., Laberecht M., Redburn D., and Schmidt H. W. (1994) Functional coupling of a Ca/calmodulin-dependent nitric oxide synthase and soluble guanylyl cyclase in vertebrate photoreceptor cells. EMBO J. 13, 3312–3320.

    PubMed  CAS  Google Scholar 

  8. Yoshida A., Pozdnyakov N., Dang L., Orselli S. M., Reddy V. N., and Sitaramayya A. (1995) Nitric oxide synthesis in retinal photoreceptor cells. Vis. Neurosci. 12, 493–500.

    PubMed  CAS  Google Scholar 

  9. Pugh E. N. Jr, Nikonov S., and Lamb T. D. (1999) Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr. Opin. Neurobiol. 9, 410–418.

    PubMed  CAS  Google Scholar 

  10. Dowling J. E. (1987) The Retina: An Approachable Part of the Brain. Belknap Press, Cambridge, MA.

    Google Scholar 

  11. Thoreson W. B. and Witkovsky P. (1999) Glutamate receptors and circuits in the vertebrate retina. Prog. Ret. Eye Res. 18, 765–810.

    CAS  Google Scholar 

  12. Bader C. R., Bertrand D., and Schwartz E. A. (1982) Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina. J. Physiol. (London) 331, 253–284.

    CAS  Google Scholar 

  13. Corey D. P., Dubinsky J. M., and Schwartz E. A. (1984) The calcium current in inner segments of rods from the salamander (Ambystoma tigrinum) retina. J. Physiol. (London) 354, 557–75.

    CAS  Google Scholar 

  14. Lasater E. M. and Witkovsky P. (1991) The calcium current of turtle cone photoreceptor axon terminals. Neurosci. Res. Suppl. 15, S165-S173.

    PubMed  CAS  Google Scholar 

  15. Yagi T. and MacLeish (1994) Ionic conductances of monkey solitary cone inner segments. J. Neurophysiol. 71, 656–665.

    PubMed  CAS  Google Scholar 

  16. Wilkinson M. F. and Barnes S. (1996) The dihydropyridine-sensitive calcium channel subtype in cone photoreceptors. J. Gen. Physiol. 107, 621–630.

    PubMed  CAS  Google Scholar 

  17. Morgans C. W. (2000) Neurotransmitter release at ribbon synapses in the retina. Immunol. Cell Biol. 78, 442–446.

    PubMed  CAS  Google Scholar 

  18. Nachman-Clewner M., St. Jules R., and Townes-Anderson E. (1999) L-type calcium channels in the photoreceptor ribbon synapse: localization and role in plasticity. J. Comp. Neur. 415, 1–16.

    PubMed  CAS  Google Scholar 

  19. Bell D. C., Butcher A. J., Berrow N. S., Page K. M., Brust P. F., Nesterova A., et al. (2001) Biophysical properties, pharmacology, and modulation of human, neuronal L-type (alpha(1D), Ca(V)1.3) voltage-dependent calcium currents. J. Neurophysiol. 85, 816–827.

    PubMed  CAS  Google Scholar 

  20. Akopian A., Johnson J. J., Gabriel R., Brecha N., and Witkovsky P. (2000) Somatostatin modulates voltage-gated K+ and Ca2+ currents in rod and cone photoreceptors of the salamander retina. J. Neurosci. 20, 929–936.

    PubMed  CAS  Google Scholar 

  21. Stella S. L. and Thoreson W. B. (2000) Differential modulation of rod and cone calcium currents in tiger salamander retina by D2 dopamine receptors and camp. Eur. J. Neurosci. 12, 3537–3548.

    PubMed  Google Scholar 

  22. Thoreson W. B. and Stella S. L. (2000) Anion Modulation of calcium current voltage-dependence and amplitude in salamander rods. Biochem. Biophys. Acta. 1464, 142–150.

    PubMed  CAS  Google Scholar 

  23. Strom T. M., Nyakatura G., Apfelstedt-Sylla E., Hellebrand H., Lorenz B., Weber B. H. F., et al. (1998) An L-type calcium-channel gene mutated in incomplete x-linked congenital stationary night blindness. Nat. Genet. 19, 260–263.

    PubMed  CAS  Google Scholar 

  24. Bech-Hansen N. T., Naylor M. J., Maybaum T. A., Pearce W. G., Koop B., Fishman G. A., et al. (1998) Loss-of-function mutations in a calcium-channel α1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nature Genet. 19, 264–267.

    PubMed  CAS  Google Scholar 

  25. Krizaj D. and Copenhagen D. R. (1998) Compartmentalization of calcium extrusion mechanisms in the outer and inner segments of photoreceptors. Neuron 21, 249–256.

    PubMed  CAS  Google Scholar 

  26. Maricq A. V. and Korenbrot J. I. (1988) Calcium and calcium-dependent chloride currents generate action potentials in solitary cone photoreceptors. Neuron. 1, 503–515.

    PubMed  CAS  Google Scholar 

  27. Schmitz Y. and Witkovsky P. (1996) Glutamate release by the intact light-responsive photore-ceptor layer of the Xenopus retina. J. Neurosci. Methods. 68, 55–60.

    PubMed  CAS  Google Scholar 

  28. Schmitz Y. and Witkovsky P. (1997) Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive calcium channel. Neuroscience. 78, 1209–1216.

    PubMed  CAS  Google Scholar 

  29. Cahille G. M. and Besharse J. C. (1992) Light-sensitive melatonin synthesis by Xenopus photoreceptors after destruction of the inner retina. Vis. Neurosci. 8, 487–490.

    Google Scholar 

  30. Witkovsky P., Schmitz Y., Akopian A., Krizaj D., and Tranchina D. (1997) Gain of rod to horizontal cell synaptic transfer: relation to glutamate release and a dihydropyridine-sensitive calcium current. J. Neurosci. 17, 7297–7306.

    PubMed  CAS  Google Scholar 

  31. Rieke F. and Schwartz E. A. (1994) A cGMP-gated current can control exocytosis at cone synapses. Neuron 13, 863–873.

    PubMed  CAS  Google Scholar 

  32. Savchenko A., Barnes S., and Kramer R. H. (1997) Cyclic-nucleotide-gated channels mediate synaptic feedback by nitric oxide. Nature 390, 694–698.

    PubMed  CAS  Google Scholar 

  33. Muresan Z. and Besharse J. C. (1993) D2-like dopamine receptors in amphibian retina: localization with fluorescent ligands. J. Comp. Neurol. 331, 149–160.

    PubMed  CAS  Google Scholar 

  34. Johnson J., Wong H., Walsh H. J., and Brecha N. C. (1999) Somatostatin receptor sst2A expression in the rat retina. Neuroscience 94, 675–683.

    PubMed  CAS  Google Scholar 

  35. Barnes S., Merchant V., and Mahmud F. (1993) Modulation of transmission gain by protons at the photoreceptor output synapse. Proc. Natl. Acad. Sci. USA 90, 10,081–10,085.

    CAS  Google Scholar 

  36. Yamamoto F., Borgula G. A., and Steinberg R. H. (1992) Effects of light and darkness on pH outside rod photoreceptors in the cat retina. Exp. Eye Res. 54, 685–697.

    PubMed  CAS  Google Scholar 

  37. Kurennyi D. E., Moroz L. L., Turner R. W., Sharkey K. A., and Barnes S. (1994) Modulation of ion channels in rod photoreceptors by nitric oxide. Neuron 13, 315–324.

    Google Scholar 

  38. Kurennyi D. E., Thurlow G. A., Turner R. W., Moroz L. L., Sharkey K. A., and Barnes S. (1995) Nitric oxide synthase in tiger salamander retina. J. Comp. Neur. 361, 525–536.

    Google Scholar 

  39. Eldred W. D. (2000) Nitric oxide in the retina. Functional neuroanatomy of the nitric oxide system, in Handbook of Chemical Neuroanatomy 17 (Steinbusch H. W. M., De Vente J., and Vincent S. R., eds.), Elsevier, Amsterdam pp. 111–145.

    Google Scholar 

  40. Thoreson W. B., Nitzan R., and Miller R. F. (1997) Reducing extracellular Cl suppresses dihydropyridine-sensitive Ca2+ currents and synaptic transmission in amphibian photoreceptors. J. Neurophysiol. 77, 2175–2190.

    PubMed  CAS  Google Scholar 

  41. Baldridge W. H., Kurennyi D. E., and Barnes S. (1998) Calcium-sensitive calcium influx in photoreceptor inner segments. J. Neurophysiol. 79, 3012–3018.

    PubMed  CAS  Google Scholar 

  42. Piccolino M., Byzov A. L., Kurennyi D. E., Pignatelli A., Sappia F., Wilkinson M., and Barnes S. (1996) Low-calcium-induced enhancement of chemical synaptic transmission from photoreceptors to horizontal cells in the vertebrate retina. Proc. Natl. Acad. Sci. USA 93, 2302–2306.

    PubMed  CAS  Google Scholar 

  43. Piccolino M. and Gerschenfeld H. M. (1980) Characteristics and ionic processes involved in feedback spikes of turtle cones. Proc. R. Soc. Lond B. 206, 439–463.

    PubMed  CAS  Google Scholar 

  44. Burkhardt D. A. Gottesman J., and Thoreson W. B. (1988) Prolonged depolarization in turtle cones evoked by current injection and stimulation of the receptive field surround. J. Physiol. (Lond) 4076, 329–348.

    Google Scholar 

  45. Thoreson W. B. and Burkhardt D. A. (1990) Effects of synaptic blocking agents on the depolarizing responses of turtle cones evoked by surround illumination. Vis. Neurosci. 5, 571–83.

    PubMed  CAS  Google Scholar 

  46. Pan Z.-H., and Hu, J-J. (2000) Voltage-dependent Na+ currents in mammalian retinal cone bipolar cells. J. Neurophysiol. 84, 2564–2571.

    PubMed  CAS  Google Scholar 

  47. Ungar F., Poscopo I., and Holtzman E. (1981) Calcium accumulation in intracellular compartments of frog retinal rod photoreceptors. Brain Res. 205, 200–206.

    PubMed  CAS  Google Scholar 

  48. Peng Y. W., Sharp A. H., Snyder S. H., and Yau K-W. (1991) Localization of the inositol 1, 4, 5-trishosphate receptor in synaptic terminals in the vertebrate retina. Neuron 6, 525–531.

    PubMed  CAS  Google Scholar 

  49. Akopian A. and Witkovsky P. (1996) Activation of metabotropic glutamate receptors Decreases high-threshold calcium current in spiking neurons of the Xenopus retina. Vis. Neurosci, 13, 549–557.

    PubMed  CAS  Google Scholar 

  50. Krizaj D., Bao J.-X., Schmitz Y., Witkovsky P., and Copenhagen D. R. (1999) Caffeine-sensitive calcium stores regulate synaptic transmission from retinal rod photoreceptors. J. Neurosci. 19, 7249–7261.

    PubMed  CAS  Google Scholar 

  51. Wu D. and Zhu P. H. (1999) Caffeine-sensitive Ca2+ stores in carp retinal bipolar cells. Neuro Report 10, 3897–3901.

    CAS  Google Scholar 

  52. Kobayashi K., Sakaba T., and Tachibana M. (1995) Potentiation of Ca2+ transients in the presynaptic terminals of goldfish retinal bipolar cells. J. Physiol. (Lond) 482, 7–13.

    CAS  Google Scholar 

  53. Shen W. and Slaughter M. M. (1998) Metabotropic and ionotropic glutamate receptors regulate calcium channel currents in salamander retinal ganglion cells. J. Physiol. (Lond) 510, 815–828.

    CAS  Google Scholar 

  54. DeVries S. H. and Schwartz E. A. (1999) Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina. Nature 397, 157–60.

    PubMed  CAS  Google Scholar 

  55. Nakajima Y., Iwakabe H., Akazawa C., Nawa H., Shigemoto R., Mizuno N., and Nakanishi S. (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem. 268, 11,868–11,873.

    CAS  Google Scholar 

  56. Vardi N. (1998) Alpha subunit of Go localizes in the dendritic tips of ON bipolar cells. J. Comp. Neur. 395, 43–52.

    PubMed  CAS  Google Scholar 

  57. Shiells R. A. and Falk G. (1990) Glutamate receptors of rod bipolar cells are linked to a cyclic GMP cascade via a G-protein. Proc. R. Soc. Lond. B. Biol. Sci. 22, 91–94.

    Google Scholar 

  58. Nawy S. and Jahr C. E. (1990) Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 346, 269–271.

    PubMed  CAS  Google Scholar 

  59. Shiells R. A. and Falk G. (1999) A rise in intracellular Ca2+ underlies light adaptation in dogfish retinal ‘on’ bipolar cells. J. Physiol. (Lond) 514, 343–350.

    CAS  Google Scholar 

  60. Nawy, S. (2000) Regulation of the On bipolar cell mGluR6 pathway by Ca2+ J. Neurosci. 20, 4471–4479.

    PubMed  CAS  Google Scholar 

  61. Marc R. E., Liu W.-L., Kalloniatis M. Raiguel SF, and van Haesendonck E. (1990) Patterns of glutamate immunoreactivity in the goldfish retina. J. Neurosci. 10, 4006–4034.

    PubMed  CAS  Google Scholar 

  62. Ehinger B., Ottersen O. P., Storm-Mathiesen J., and Dowling J. E. (1988) Bipolar cells in the turtle retina are strongly immunoreactive for glutamate. Proc. Natl. Acad. Sci. USA 85, 8321–832.

    PubMed  CAS  Google Scholar 

  63. Kaneko A, Pinto L. H., and Tachibana M. (1989) Transient calcium current of retinal bipolar cells of the mouse. J. Physiol. (Lond) 410, 613–629.

    CAS  Google Scholar 

  64. Maguire G., Maple B., Lukasiewicz P., and Werblin F. (1989) Gamma-aminobutyrate type B receptor modulation of L-type calcium channel current at bipolar cell terminals in the retina of the tiger salamander. Proc. Natl. Acad. Sci. USA 86, 10144–10147.

    PubMed  CAS  Google Scholar 

  65. Pan, Z.-H. (2000) Differential expression of high- and two types of low-voltage-activated calcium currents in rod and cone bipolar cells of the rat retina. J. Neurophysiol. 83, 513–527.

    PubMed  CAS  Google Scholar 

  66. Tachibana M., Okada T., Arimura T., Kobayashi K., and Piccolino M. (1993) Dihydropyridine-sensitive calcium current mediates neurotransmitter release from bipolar cells of the goldfish retina. J. Neurosci. 13, 2898–2909.

    PubMed  CAS  Google Scholar 

  67. Heidelberger R., Heinemann C., Neher E., and Matthews G. (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513–515.

    PubMed  CAS  Google Scholar 

  68. Lagnado L., Gomis A., and Job C. (1996) Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. Neuron 17, 957–967.

    PubMed  CAS  Google Scholar 

  69. Gomis A. Burrone J., and Lagnado L. (1999) Two actions of calcium regulate the supply of releasable vesicles at the ribbon synapse of retinal bipolar cells. J. Neurosci. 19, 6309–6317.

    PubMed  CAS  Google Scholar 

  70. Wu S. M., Gao F., and Yang X. L. (2001) Non-linear high-gain and sustained-to transient signal transduction from outer to inner retina is mediated by transient depolarizing potentials. Invest. Ophthal. Vis. Sci. 42, B762.

    Google Scholar 

  71. Zenisek D. and Matthews G. (1998) Calcium action potentials in retinal bipolar neurons. Vis. Neurosci. 15, 69–75

    PubMed  CAS  Google Scholar 

  72. Protti D. A., Flores-Herr N., von Gersdorff H. (2000) Light evokes Ca2+ spikes in the axon terminal of a retinal bipolar cell. Neuron 25, 215–227.

    PubMed  CAS  Google Scholar 

  73. Minami N., Berglund K., Sakaba T., Kohmoto H., and Tachibana M. (1998) Potentiation of transmitter release by protein kinase C in goldfish retinal bipolar cells. J. Physiol. 512, 219–225.

    PubMed  CAS  Google Scholar 

  74. Feigenspan A. and Bormann J. (1994) Modulation of GABAC receptors in rat retinal bipolar cells by protein kinase. C. J. Physiol (Lond) 481, 325–330.

    CAS  Google Scholar 

  75. Heidelberger R. and Matthews G. (1991) Inhibition of calcium influx and calcium current by γ-aminobutyric acid in single synaptic terminals. Proc. Natl. Acad. Sci. USA 88, 7135–7139.

    PubMed  CAS  Google Scholar 

  76. Lukasiewicz P. D. and Werblin F. S. (1994) A novel GABA receptor modulates synaptic transmission from bipolar to ganglion cells in the tiger salamander retina. In salamander bipolar cells. J. Neurosci. 14, 1213–1223.

    PubMed  CAS  Google Scholar 

  77. Rudy B. (1988) Diversity and ubiquity of K channels. Neuroscience 25, 729–749.

    PubMed  CAS  Google Scholar 

  78. Sakaba T., Ishikane H., Tachibana M. (1997) Ca2+-activated K+ current at presynaptic terminals of goldfish retinal bipolar cells. Neurosci. Res. 27, 219–228.

    PubMed  CAS  Google Scholar 

  79. Von Gersdorff H. and Matthews G. (1994) Inhibition of endocytosis by elevated internal calcium in a synaptic terminal. Nature 370, 652–655.

    PubMed  CAS  Google Scholar 

  80. Reinhart P. H. and Levitan I. B. (1995) Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel. J, Neurosci. 15, 4572–4579.

    CAS  Google Scholar 

  81. Von Gersdorff H. and Matthews G. (1999) Electrophysiology of synaptic vesicle cycling. Ann. Rev. Physiol. 61, 725–752.

    Google Scholar 

  82. Kolb H. (1995) Amacrine cells of the mammalian retina: neurocircuitry and functional roles. Eye 11, 904–923.

    Google Scholar 

  83. Gleason E., Borges S., and Wilson M. (1994) Control of transmitter release from retinal amacrine cells by Ca2+ influx and efflux. Neuron 13, 1109–1117.

    PubMed  CAS  Google Scholar 

  84. Gleason E, Borges S., and Wilson M. (1995) Electrogenic Na-Ca exchange clears Ca2+ loads from retinal amacrine cells in culture. J. Neurosci. 15, 3612–3621.

    PubMed  CAS  Google Scholar 

  85. Borges S., Gleason E., Turelli M., and Wilson M. (1995) The Kinetics of quantal transmitter release from retinal amacrine cells. Proc. Natl. Acad. Sci. USA 92, 6896–6900.

    PubMed  CAS  Google Scholar 

  86. Taschenberger H. and Grantyn R. (1995) Several types of Ca2+ channels mediate glutamatergic synaptic responses to activation of single Thy-1-immunolabeled rat retinal ganglion neurons. J. Neurosci. 15, 2240–2254.

    PubMed  CAS  Google Scholar 

  87. Shen W. and Slaughter M. M. (1999a) Metabotropic GABA receptors facilitate L-type and inhibit N-type calcium channels in single salamander retinal neurons. J. Physiol. 516, 711–718.

    PubMed  CAS  Google Scholar 

  88. Witkovsky P., Owen W. G., and Woodworth M. (1983) Gap junctions among the perikarya, dendrites and axon terminals of the luminosity-type horizontal cells of the turtle retina. J. Comp. Neur. 216, 359–368.

    PubMed  CAS  Google Scholar 

  89. Vaney D. I. (1994) Patterns of neuronal coupling in the retina. Prog. Retina Eye Res. 13, 301–355.

    Google Scholar 

  90. Gold G. H. and Dowling J. E. (1979) Photoreceptor coupling in retina of the toad, Bufo marinus. I Anatomy. J. neurophysiol. 42, 292–310.

    PubMed  CAS  Google Scholar 

  91. Wong-Reiley M. T. (1974) Synaptic organization of the inner plexiform layer in the retina of the tiger salamander. J. Neurocytol. 3, 1–33.

    Google Scholar 

  92. Van Haesendonck E. and Missotten L. (1983) Interbipolar contacts in the dorsal inner plexiform layer in the retina of Callionymus lyra L. J. Ultrastruct. Res. 83, 303–311.

    PubMed  Google Scholar 

  93. Bruzzone R. and Ressot C. (1997) Connexins, gap junctions and cell-cell signaling in the nervous system. Eur. J. Neurosci. 9, 1–6.

    PubMed  CAS  Google Scholar 

  94. DeVries S. H., Schwartz E. A. (1992) Hemigap-junction channels in solitary horizontal cells of the catfish retina. J. Physiol. (London), 445, 201–230.

    CAS  Google Scholar 

  95. Kamermans M., Fahrenfort I., Schultz K., Janssen-Bienhold U., Sjoerdsma T., and Weiler R. (2001) Hemichannel-mediated inhibition in the outer retina. Science 292, 1178–1180.

    PubMed  CAS  Google Scholar 

  96. Gerschenfeld H. M., Neyton J., Piccolino M., and Witkovsky P. (1982) L-horizontal cells of the turtle: network organization and coupling modulation. Biomed. Res. 3, 21–34.

    CAS  Google Scholar 

  97. Knapp A. G. and Dowling J. E. (1987) Dopamine enhances excitatory amino acid-gated conductances in cultured retinal horizontal cells. Nature 325, 437–439.

    PubMed  CAS  Google Scholar 

  98. DeVries S. H. and Schwartz E. A. (1989) Modulation of an electrical synapse between solitary pairs of catfish horizontal cells by dopamine and second messengers. J. Physiol. (Lond) 414 351–75.

    CAS  Google Scholar 

  99. Lu C. and McMahon D. G. (1997) Modulation of hybrid bass retinal gap junctional channel gating by nitric oxide. J. Physiol. (London) 499, 689–699.

    CAS  Google Scholar 

  100. McMahon D. G. and Mattson M. P. (1996) Horizontal cell electrical coupling in the giant danio: synaptic modulation by dopamine and synaptic maintenance by calcium. Brain Res. 718, 89–96.

    PubMed  CAS  Google Scholar 

  101. Takahashi K. I. and Copenhagen D. R. (1996) Modulation of neuronal function by intracellular pH. Neurosci. Res. 24, 109–116.

    PubMed  CAS  Google Scholar 

  102. Takahashi K.-I. and Dixon D. B. Copenhagen D. R. (1993) Modulation of a sustained calcium current by intracellular pH in horizontal cells of fish retina. J. Gen. Physiol. 101: 695–714.

    PubMed  CAS  Google Scholar 

  103. Dixon D. B., Takahashi K.-I., and Copenhagen D. R. (1993) L-glutmate suppresses HVA calcium current in catfish horizontal cells by raising intracellular proton concentration. Neuron 11, 267–277.

    PubMed  CAS  Google Scholar 

  104. Chesler M. (1990) The regulation and modulation of pH in the nervous system. Prog. Neurobiol. 34, 401–427.

    PubMed  CAS  Google Scholar 

  105. Shatz C. J. (1994) Role of spontaneous neural activity in the patterning of connections between retina and LGN during visual system development. Int. J. Dev. Neurosci. 12, 531–546.

    PubMed  CAS  Google Scholar 

  106. Stellwagen D., Shatz C. J., and Feller M. B. (1999) Dynamics of retinal waves are controlled by cyclic AMP. Neuron 24, 673–685.

    PubMed  CAS  Google Scholar 

  107. Wong R. O., Chernjavsky A., Smith S. J., and Schatz C. J. (1995) Early functional neural networks in the developing retina. Nature 374, 716–718.

    PubMed  CAS  Google Scholar 

  108. Feller M. B., Welk D. P., Stelwagen D., Werblin F., and Shatz C. J. (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272, 182–187.

    Google Scholar 

  109. Catsicas M. and Mobbs P. (1995) Retinal development: waves are swell. Curr. Biol. 5, 977–979.

    PubMed  CAS  Google Scholar 

  110. Hardingham G. E., Arnold F. J. L., and Bading H. (2001) Nuclear calcium signaling controls CREB-mediated gene eexpression triggered by synaptic activity. Nature Neurosci. 4, 261–267.

    PubMed  CAS  Google Scholar 

  111. Newman E. A. and Zahs K. R. (1997) Calcium waves in retinal glial cells. Science 275, 844–847.

    PubMed  CAS  Google Scholar 

  112. Newman E. A. and Zahs K. R. (1998) Modulation of neuronal activity by glial cells in the retina. J. Neurosci. 18, 4022–4028.

    PubMed  CAS  Google Scholar 

  113. Newman E. A. (2001) Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J Neurosci. 21, 2215–2223.

    PubMed  CAS  Google Scholar 

  114. Akopian A. (2000) Neuromodulation of lig- and- and voltage-gated channels in amphibian retina. Microscopy Res. 50, 403–410 photoreceptors of the salamander retina. J. Neurosci. 20, 929–936.

    CAS  Google Scholar 

  115. Brivanlou I. H. and Meister M. (1998) Mechanisms of concerted firing among retinal ganglion cells. Neuron 20, 527–539.

    PubMed  CAS  Google Scholar 

  116. Meister M. and Berry M. J. (1999) The neural code of the retina. Neuron 22, 435–450.

    PubMed  CAS  Google Scholar 

  117. Melena J. and Osborne N. N. (2001) Voltage-dependent calcium channels in the rat retina:Involvement in NMDA-stimulated influx of calcium. Exp. Eye Res. 72, 393–401.

    PubMed  CAS  Google Scholar 

  118. Gilbertson T. A., Scobey R., Wilson M. (1991) Permeation of calcium ions through non-NMDA glutamate channels in retinal bipolar cells. Science 251, 1613–1615.

    PubMed  CAS  Google Scholar 

  119. Duarte C. B., Santos P. F., and Carvalho A. P. (1996) [Ca2+]i regulation by glutamate receptor agonists in cultured chick retina cells. Vis. Res. 36, 1091–1102.

    PubMed  CAS  Google Scholar 

  120. Sugioka M., Fukuda Y., Yamashita M. (1998) Development of glutamate-induced intracellular Ca2+ rise in the embryonic chick retina. J. Neurobiol. 34, 113–125.

    PubMed  CAS  Google Scholar 

  121. Leinders-Zufall T., Rand M. N., Waxman S. G., and Kocsis J. D. (1994) Differential role of two Ca permeable non-NMDA glutamate channels in rat retinal ganglion cells: kainate-induced cytoplasmic and nuclear Ca signals. J. Neurophysiol. 72, 2503–2516.

    PubMed  CAS  Google Scholar 

  122. Zhang D., Sucher N. J., and Lipton S. A. (1995) Coexpression of AMPA/kaina te receptor-operated channels with high and low Ca permeability in single rat retinal ganglion cells. Neuroscience 67, 177–188.

    PubMed  CAS  Google Scholar 

  123. Taschenberger H., Juttner R., and Grantyn R. (1999) Ca2+ permeable P2X receptor channels in cultured rst retinal ganglion cells. J. Neurosci. 19, 3353–3366.

    PubMed  CAS  Google Scholar 

  124. Edwards J. A. and Cline H. T. (1999) Lioght-induced calcium influx into retinal axons is regulated by presynaptic nicotininc acetylcholine recepotr activity in vivo. J. Neurophysiol. 81, 895–907.

    PubMed  CAS  Google Scholar 

  125. Denk W. and Detwiler P. B. (1999) Optical recording of light-evoked calcium signals in the functionally intact retina. Proc. Natl. Acad. Sci. USA 96, 7035–7040.

    PubMed  CAS  Google Scholar 

  126. Massey S. C. (1990) Cell types using glutamate as a neurotransmitter in the vertebrate retina. Prog. Ret. Res. 9, 399–425.

    CAS  Google Scholar 

  127. Hollmann M. and Heinemann S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.

    PubMed  CAS  Google Scholar 

  128. Burnashev N. (1998) Calcium permeability of ligand-gated channels. Cell Calcium 24, 325–332.

    PubMed  CAS  Google Scholar 

  129. Lukasiewicz P. D., Wilson J. A., and Lawence J. E. (1997) AMPA-preferring receptors mediate excitatory synaptic inputs to retinal ganglion cells. J. Neurophysiol. 77, 57–64.

    PubMed  CAS  Google Scholar 

  130. Massey S. C. and Miller R. F. (1988) Glutamate receptors of ganglion cells in the rabbit retina: evidence for glutamate as a bipolar cell transmitter. J. Physiol. (Lond) 405, 635–655.

    CAS  Google Scholar 

  131. Diamond J. S. and Copenhagen D. R. (1993) The contribution of NMDA and non-NMDA receptors to the light-evoked input-output characteristics of retinal ganglion cells. Neuron 11, 725–738.

    PubMed  CAS  Google Scholar 

  132. Akopian A. and Witkovsky P. (2001) Intracellular calcium reduces light-induced excitatory post-synaptic responses in salamander retinal ganglion cells. J. Physiol. (London) 532, 43–53.

    CAS  Google Scholar 

  133. Tachibana M. (1985) Permeability changes induced by L-glutamate in solitary retinal horizontal cells isolated from Carassius auratus. J. Physiol. (Lond) 358, 153–167.

    CAS  Google Scholar 

  134. Peng Y. W., Blackstone C. P., Huganir R. L., and Yau K. W. (1995) Distribution of glutamate receptor subtypes in the vertebrate retina. Neuroscience 66, 483–497.

    PubMed  CAS  Google Scholar 

  135. Hartveit E., Branstätter J. H., and Wässle H. (1995) Expression of the mRNA of seven metabotropic glutamate receptors (mGluR1 to 7) in the rat retina. An in situ hybridization study on tissue sections and isolated cells. Eur. J. Neurosci. 7, 1472–1483.

    PubMed  CAS  Google Scholar 

  136. Brandstätter J. H., Koulen P., and Wässle H. (1998) Diversity of glutamate receptors in the mammalian retina. Vis. Res. 38, 1385–1397.

    PubMed  Google Scholar 

  137. Koulen P., Kuhn R., Wässle H., and Brandstatter H. (1997) Group I metabotropic glutamate receptors mGluR1 alpha and mGluR5a: localization in both synaptic layers of the rat retina. J. Neurosci. 17, 2200–2211.

    PubMed  CAS  Google Scholar 

  138. Awatramani G. B. and Slaughter M. M. (2000) Origin of transient and sustained responses in ganglion cells of the retina. J. Neurosci. 20, 7087–7095.

    PubMed  CAS  Google Scholar 

  139. Rothe T., Bigle V., and Grantyn R. (1994) Potentiating and depressant effects of metabotropic glutamate receptor agonists on high-voltage-activated calcium currents in cultured retinal ganglion neurons from postnatal mice. Pflugers Arch. 426, 161–170.

    PubMed  CAS  Google Scholar 

  140. Bindokas V. P. and Ishida A. T. (1991) (-)-baclofen and gamma-aminobutyric acid inhibit calcium currents in isolated retinal ganglion cells. Proc. Natl. Acad. Sci. USA. 88, 10759–10763.

    PubMed  CAS  Google Scholar 

  141. Zhang J., Shen W., and Slaughter M. M. (1997) Two metabotropic GABA receptors differently modulate calcium currents in retinal ganglion cells. J. Gen. Physiol. 110, 45–58.

    PubMed  CAS  Google Scholar 

  142. Liu Y. and Lasater E. M. (1994) Calcium currents in turtle retinal ganglion cells. II. Dopamine modulation via a cyclic AMP-dependent mechanism. J. Neurophysiol. 71, 743–752.

    PubMed  CAS  Google Scholar 

  143. Hiroka K., Kourennyi D. E., and Barnes S. (2000) Calcium channel activation facilitated by nitric oxide in retinal ganglion cells. J. Neurophysiol. 83, 198–206.

    Google Scholar 

  144. Collingridge G. L. and Singer W. (1990) Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol. Sci. 11, 290–296.

    PubMed  CAS  Google Scholar 

  145. Chittajallu R., Alford S., and Collingridge G. L. (1998) Ca2+ and synaptic plasticity. Cell Calcium 24, 377–385.

    PubMed  CAS  Google Scholar 

  146. Shen W. and Slaughter M. M. (1999) Internal calcium modulates apparent affinity of metabotropic GABA receptors. J. Neurophysiol. 82, 3298–3306.

    PubMed  CAS  Google Scholar 

  147. Terashima T., Ochiishi T., and Yamauchi T. (1994) Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II isoforms in the ganglion cells of the rat retina: immunofluorescence histochemistry combined with a fluorescent retrograde tracer. Brain Res. 650, 133–139.

    PubMed  CAS  Google Scholar 

  148. Laabich A. and Cooper N. G. F. (1999) Regulation of calcium/calmodulin-dependent protein kinase II in the adult rat retina is mediated by ionotropic glutamate receptors. Exp. Eye Res. 68, 703–713.

    PubMed  CAS  Google Scholar 

  149. Akopian A., Gabriel R., and Witkovsky P. (1999) Calcium released from intracellular stores inhibits GABAA-mediated currents in ganglion cells of the turtle retina. J. Neurophysiol. 80, 1105–1115.

    Google Scholar 

  150. Inoue M., Omura Y., Yakushiji T., and Akaike N. (1986) Intracellular Ca ions decrease the affinity of the GABA receptor. Nature 324, 156–158.

    PubMed  CAS  Google Scholar 

  151. Mouginot D., Feltz P., and Schlichter R. (1991) Modulation of GABA-gated chloride currents by intracellular calcium in cultured porcine melanotrophs. J. Physiol. (Lond) 394, 501–524.

    Google Scholar 

  152. Mulle C., Choquet D., Korn H., and Changoeux J. P. (1992) Calcium influx through nicotinic receptors in rat central neurons: its relevance to cellular regulation. Neuron 8, 135–143.

    PubMed  CAS  Google Scholar 

  153. Teyler T. J., Cavus I., Coussens C., DiScenna P., Grover L., Lee Y. P., and Little Z. (1994) Multideterminant role of calcium in hippocampal synaptic plasticity. Hippocampus 4, 623–634.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abram Akopian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akopian, A., Witkovsky, P. Calcium and retinal function. Mol Neurobiol 25, 113–132 (2002). https://doi.org/10.1385/MN:25:2:113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:25:2:113

Index Entries

Navigation