Advertisement

Molecular Biotechnology

, Volume 34, Issue 2, pp 247–256 | Cite as

The conundrum between immunological memory to adenovirus and their use as vectors in clinical gene therapy

Review

Abstract

In the context of clinical gene transfer using viral vectors, the risk of memory antivector immunity is often poorly appreciated. The immunological past of the patient, the site of injection, and the vector dose will play intertwined and decisive roles in the safety and efficacy of treatment. To circumvent the draw-backs due to the ubiquitous human adenovirus (HAd) memory immunity, we believe that vectors derived from canine adenovirus type 2 (CAV-2) will be more clinically useful than those derived from HAds based, in part, on the potential lack of immunological memory. CAV-2 is not a human pathogen in spite of the approx 100,000 yr of cohabitation of humans with dogs. During the last 8 yr, we found that CAV-2 vectors preferentially transduced neurons in the central nervous system (CNS) of several species, and had a surprisingly efficient level of axoplasmic transport. CAV-2 vectors also lead to greater than 1 yr transgene expression in the immunocompetent rat CNS—without immunosuppression. However, more immediate harm can be caused to a patient via an acute and/or chronic vector-induced cellular infiltration in the CNS than by the normal progression of most neurodegenerative disorders. In this context, we continue to assess the clinical potential of CAV-2. This mini-review addresses our analysis of the interaction of CAV-2 vectors with human memory immunity and monocyte-derived dendritic cells.

Index Entries

Canine adenovirus type 2 CAV-2 immune response dendritic cells antibodies memory T cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muruve, D. A. (2004) The innate immune response to adenovirus vectors. Hum. Gene Ther. 15, 1157–1166.PubMedCrossRefGoogle Scholar
  2. 2.
    Klonjkowski, B., Gilardi-Hebenstreit, P., Hadchouel, J., et al. (1997) A recombinant E1-deleted canine adenoviral vector capable of transduction and expression of a transgene in human-derived cells and in vivo. Hum. Gene. Ther. 8, 2103–2115.PubMedGoogle Scholar
  3. 3.
    Kremer, E. J. (2004) CAR chasing: canine adenovirus vectors-all bite and no bark? J. Gene Med. 6, S139-S151.PubMedCrossRefGoogle Scholar
  4. 4.
    Kremer, E. J., Boutin, S., Chillon, M., and Danos, O. (2000) Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J. Virol. 74, 505–512.PubMedCrossRefGoogle Scholar
  5. 5.
    Soudais, C., Skander, N., and Kremer, E. J. (2004) Long-term in vivo transduction of neurons throughout the rat central nervous system using novel helper-dependent CAV-2 vectors. FASEB J. 18, 391–393.PubMedGoogle Scholar
  6. 6.
    Soudais, C., Laplace-Builhe, C., Kissa, K., and Kremer, E.J. (2001) Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB J. 15, 2283–2285.PubMedGoogle Scholar
  7. 7.
    Benson, S. D., Bamford, J. K., Bamford, D. H., and Burnett, R. M. (2004) Does common architecture reveal a viral lineage spanning all three domains of life? Mol. Cell. 16, 673–685.PubMedCrossRefGoogle Scholar
  8. 8.
    Keriel, A., Rene, C., Galer, C., Zabner, J., and Kremer, E.J. (2006) Canine adenovirus type 2 vectors for lung-directed gene transfer: efficacy, immunity and duration of transgene expression using helper-dependent vectors. J. Virol. 80, 1487–1496.PubMedCrossRefGoogle Scholar
  9. 9.
    Parks, R.J., Chen, L., Anton, M., Sankar, U., Rudnicki, M. A., and Graham, F. L. (1996) A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 93, 13,565–13,570.CrossRefGoogle Scholar
  10. 10.
    Kochanek, S., Clemens, P. R., Mitani, K., Chen, H. H., Chan, S., and Caskey, C. T. (1996) A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc. Natl. Acad. Sci. USA 93, 5731–5736.PubMedCrossRefGoogle Scholar
  11. 11.
    Amalfitano, A. and Parks, R. J. (2002) Separating fact from fiction: assessing the potential of modified adenovirus vectors for use in human gene therapy. Curr. Gene Ther. 2, 111–133.PubMedCrossRefGoogle Scholar
  12. 12.
    Fabry, C. M., et al. (2005) A quasi-atomic model of human adenovirus type 5 capsid. Embo J. 24, 1645–1654.PubMedCrossRefGoogle Scholar
  13. 13.
    Horwitz, M. (1996) Adenoviruses. In: Fields Virology, (Fields, B. and Knipe, D., eds.), Raven Press, Philadelphia, PA, pp. 2149–2171.Google Scholar
  14. 14.
    Shenk, T. (1996) Adenoviridae: the viruses and their replication. In: Fields Virology, (Fields, B. and Knipe, D., eds.), Raven Press, Philadelphia, PA, pp. 2111–2148.Google Scholar
  15. 15.
    Worgall, S., Wolff, G., Falck-Pedersen, E., and Crystal, R. G. (1997) Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum. Gene Ther. 8, 37–44.PubMedGoogle Scholar
  16. 16.
    Schmitz, H., Wigand, R., and Heinrich, W. (1983) Worldwide epidemiology of human adenovirus infections. Am. J. Epidemiol. 117, 455–466.PubMedGoogle Scholar
  17. 17.
    Varghese, R., Mikyas, Y., Stewart, P.L., and Ralston, R. (2004) Postentry neutralization of adenovirus type 5 by an antihexon antibody. J. Virol. 78, 12,320–12,332.CrossRefGoogle Scholar
  18. 18.
    Gahery-Segard, H., Juillard, V., Gaston, J., et al. (1997) Humoral immune response to the capsid components of recombinant adenoviruses: routes of immunization modulate virus-induced Ig subclass shifts. Eur. J. Immunol. 27, 653–659.PubMedCrossRefGoogle Scholar
  19. 19.
    Sumida, S. M., Truitt, D. M., Lemckert, A. A., et al. (2005) Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. J. Immunol. 174, 7179–7185.PubMedGoogle Scholar
  20. 20.
    Fender, P., Kidd, A. H., Brebant, R., Oberg, M., Drouet, E., and Chroboczek, J. (1995) Antigenic sites on the receptor-binding domain of human adenovirus type 2 fiber. Virology 214, 110–117.PubMedCrossRefGoogle Scholar
  21. 21.
    Segerman, A., Atkinson, J.P., Marttila, M., Dennerquist, V., Wadell, G., and Arnberg, N. (2003) Adenovirus type 11 uses CD46 as a cellular receptor. J. Virol. 77, 9183–9191.PubMedCrossRefGoogle Scholar
  22. 22.
    Dechecchi, M.C., Tamanini, A., Bonizzato, A., and Cabrini, G. (2000) Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology 268, 382–390.PubMedCrossRefGoogle Scholar
  23. 23.
    Nemerow, G. W. and Stewart, P. L. (1999) Role of alpha(v) integrins in adenovirus cell entry and gene delivery. Microbiol. Mol. Biol. Rev. 63, 725–734.PubMedGoogle Scholar
  24. 24.
    Wohlfart, C. (1988) Neutralization of adenoviruses: kinetics, stoichiometry, and mechanisms. J. Virol. 62, 2321–2328.PubMedGoogle Scholar
  25. 25.
    Bauer, U., Flunker, G., Bruss, K., et al. (2005) Detection of antibodies against adenovirus protein IX, fiber, and hexon in human sera by immunoblot assay. J. Clin. Microbiol. 43, 4426–4433.PubMedCrossRefGoogle Scholar
  26. 26.
    Abad, L. W., Neumann, M., Tobias, L., Obenauer-Kutner, L., Jacobs, S., and Cullen, C. (2002) Development of a biosensor-based method for detection and isotyping of antibody responses to adenoviral-based gene therapy vectors. Anal. Biochem. 310, 107–113.PubMedCrossRefGoogle Scholar
  27. 27.
    Stallwood, Y., Fisher, K. D., Gallimore, P. H., and Mautner, V. (2000) Neutralisation of adenovirus infectivity by ascitic fluid from ovarian cancer patients. Gene Ther. 7, 637–643.PubMedCrossRefGoogle Scholar
  28. 28.
    Gahery-Segard, H., Molinier-Frenkel, V., Le Boulaire, C., et al. (1997) Phase 1 trial of recombinant adenovirus gene transfer in lung cancer. Longitudinal study of the immune responses to transgene and viral products. J. Clin. Invest. 100, 2218–2226.PubMedCrossRefGoogle Scholar
  29. 29.
    Harvey, B. G., Worgall, S., Ely, S., Leopold, P. L., and Crystal, R. G. (1999) Cellular immune responses of healthy individuals to intradermal administration of an E1–E3- adenovirus gene transfer vector. Hum. Gene Ther. 10, 2823–2837.PubMedCrossRefGoogle Scholar
  30. 30.
    Gasque, P. (2004) Complement: a unique innate immune sensor for danger signals. Mol. Immunol. 41, 1089–1098.PubMedCrossRefGoogle Scholar
  31. 31.
    Cichon, G., Boeckh-Herwig, S., Schmidt, H. H., et al. (2001) Complement activation by recombinant adenoviruses. Gene Ther. 8, 1794–1800.PubMedCrossRefGoogle Scholar
  32. 32.
    Frank, M. M. and Fries, L. F. (1991) The role of complement in inflammation and phagocytosis. Immunol. Today 12, 322–326.PubMedCrossRefGoogle Scholar
  33. 33.
    Boruchov, A. M., Heller, G., Veri, M. C., Bonvini, E., Ravetch, J. V., and Young, J. W. (2005) Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J. Clin. Invest. 115, 2914–2123.PubMedCrossRefGoogle Scholar
  34. 34.
    Van Vugt, M. J., Van den Herik-Oudijk, I. E., and Van de Winkel, J. G. (1998) FcgammaRla-gamma-chain complexes trigger antibody-dependent cell-mediated cytotoxicity (ADCC) in CD5+ B cell/macrophage IIA1.6 cells. Clin. Exp. Immunol. 113, 415–422.PubMedCrossRefGoogle Scholar
  35. 35.
    Bergelson, J. M., Cunningham, J. A., Droguett, G., et al. (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323.PubMedCrossRefGoogle Scholar
  36. 36.
    Shirali, G.S., Ni, J., Chinnock, R. E., et al. (2001) Association of viral genome with graft loss in children after cardiac transplantation. N. Engl. J. Med. 344, 1498–1503.PubMedCrossRefGoogle Scholar
  37. 37.
    Chakrabarti, S., Mautner, V., Osman, H., et al. (2002) Adenovirus infections following allogeneic stem cell transplantation: incidence and outcome in relation to graft manipulation, immunosupression, and immune recovery. Blood 100, 1619–1627.PubMedCrossRefGoogle Scholar
  38. 38.
    Hierholzer, J. C. (1992) Adenoviruses in the immunocompromised host. Clin Microbiol. Rev. 5, 262–274.PubMedGoogle Scholar
  39. 39.
    Flomenberg, P., Piaskowski, V., Truitt, R. L., and Casper, J. T. (1995) Characterization of human proliferative T cell responses to adenovirus. J. Infect. Dis. 171, 1090–1096.PubMedGoogle Scholar
  40. 40.
    Olive, M., Eisenlohr, L. C., and Flomenberg, P. (2001) Quantitative analysis of adenovirus-specific CD4+ T-cell responses from healthy adults. Viral Immunol. 14, 403–413.PubMedCrossRefGoogle Scholar
  41. 41.
    Castelli, F. A., Buhot, C., Sanson, A., et al. (2002) HLA-DP4, the most frequent HLA II molecule, defines a new supertype of peptide-binding specificity. J. Immunol. 169, 6928–6934.PubMedGoogle Scholar
  42. 42.
    Tang, J., Olive, M., Champagne, K., et al. (2004) Adenovirus hexon T-cell epitope is recognized by most adults and is restricted by HLA DP4, the most common class II allele. Gene Ther. 11, 1408–1415.PubMedCrossRefGoogle Scholar
  43. 43.
    Smith, C. A., Woodruff, L. S., Rooney, C., Kitchingman, G. R. (1998) Extensive cross-reactivity of adenovirus-specific cytotoxic T cells. Hum. Gene Ther. 9, 1419–1427.PubMedGoogle Scholar
  44. 44.
    Leen, A. M., Sili, U., Savoldo, B., et al. (2004) Fibermodified adenoviruses generate subgroup cross-reactive, adenovirus-specific cytotoxic T lymphocytes for therapeutic applications. Blood 103, 1011–1019.PubMedCrossRefGoogle Scholar
  45. 45.
    Perreau, M. and Kremer, E. J. (2005) Frequency, proliferation, and activation of human memory T cells induced by a nonhuman adenovirus. J. Virol. 79, 14,595–14,605.CrossRefGoogle Scholar
  46. 46.
    Jooss, K., Yang, Y., Fisher, K. J., and Wilson, J. M. (1998) Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J. Virol. 72, 4212–4123.PubMedGoogle Scholar
  47. 47.
    Foti, M., Granucci, F., and Ricciardi-Castagnoli, P. (2004) A central role for tissue-resident dendritic cells in innate responses. Trends Immunol. 25, 650–654.PubMedCrossRefGoogle Scholar
  48. 48.
    Le Bon, A. and Tough, D. F. (2002) Links between innate and adaptive immunity via type I interferon. Curr. Opin. Immunol. 14, 432–436.PubMedCrossRefGoogle Scholar
  49. 49.
    Banchereau, J., Briere, F., Caux, C., et al. (2000) Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811.PubMedCrossRefGoogle Scholar
  50. 50.
    Glasgow, J. N., Kremer, E. J., Hemminki, A., Siegal, G. P., Douglas, J. T., and Curiel, D. T. (2004) An adenovirus vector with a chimeric fiber derived from canine adenovirus type 2 displays novel tropism. Virology 324, 103–116.PubMedCrossRefGoogle Scholar
  51. 51.
    Tan, P. H., Beutelspacher, S. C., Xue, S. A., et al. (2005) Modulation of human dendritic-cell function following transduction with viral vectors: implications for gene therapy. Blood 105, 3824–3832.PubMedCrossRefGoogle Scholar
  52. 52.
    Rea, D., Schagen, F. H., Hoeben, R. C., et al. (1999) Adenoviruses activate human dendritic cells without polarization toward a T-helper type 1-inducing subset. J. Virol. 73, 10,245–10,253.Google Scholar
  53. 53.
    Neufeld, E. F. (1991) Lysosomal storage diseases. Annu. Rev. Biochem. 60, 257–280.PubMedCrossRefGoogle Scholar
  54. 54.
    Subklewe, M., Paludan, C., Tsang, M. L., Mahnke, K., Steinman, R. M., and Munz, C. (2001) Dendritic cells cross-present latency gene products from Epstein-Barr virus-transformed B cells and expand tumor-reactive CD8(+) killer T cells. J. Exp. Med. 193, 405–411.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  1. 1.Institut de Génétique Moléculaire de MontpellierMontpellierFrance
  2. 2.CNRS UMR 5535MontpellierFrance
  3. 3.IFR 122MontpellierFrance

Personalised recommendations