Advertisement

Molecular Biotechnology

, Volume 34, Issue 1, pp 15–27 | Cite as

Quantitative real-time RT-PCR of disseminated tumor cells in combination with immunomagnetic cell enrichment

  • Silke Lankiewicz
  • Bertha Gutierrez Rivero
  • Oliver Böcher
Research

Abstract

Detection of disseminated tumor cells in the blood circulation is important in assessing tumor progression. The objective of this examination was to develop a highly specific and sensitive quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) assay for the detection of relevant tumor-associated transcripts in patients' blood. The qRT-PCR assays detect the human epidermal growth factor receptor 2 (HER2) and CK20 transcripts of two tumor cells spiked into 5 mL of blood after an immunomagnetic tumor cell enrichment. Furthermore, the HER2 assay is only specific when enrichment is included. This procedure is a useful alternative to fluorescence in situ hybridization and immunocytochemistry for gene alteration analysis in human tumors. The analysis of the studied molecular markers of tumor cells in blood may be useful in the detection of disseminated tumor cells as well as for monitoring treatment response, early detection of relapse, and for stratification of patients with carcinoma.

Index Entries

Quantitative real-time reverse transcriptase-polymerase chain reaction disseminated tumor cells HER2 CK20 tumor diagnostics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dimmler A., Gerhards, R., Betz, C., et al. (2001) Transcription of cytokeratins, 8, 18, and 19 in bone marrow and limited expression of cytokeratins 7 and 20 by carcinoma cells: inherent limitations for RT-PCR in the detection of isolated tumor cells. Lab. Invest. 81, 1351–1361.PubMedGoogle Scholar
  2. 2.
    Gancberg, D., Di Leo, A., Cardoso, F., et al. (2002) Comparison of HER-2 status between primary breast cancer and corresponding distant metastatic sites. Ann. Oncol. 13, 1036–1043.PubMedCrossRefGoogle Scholar
  3. 3.
    Holbro, T. and Hynes, N. E. (2004) ErbB receptors: directing key signaling networks throughout life. Annu. Rev. Pharmacol. Toxicol. 44, 195–217.PubMedCrossRefGoogle Scholar
  4. 4.
    Slamon D. J., Leyland-Jones, B., Shak, S., et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792.PubMedCrossRefGoogle Scholar
  5. 5.
    Hayes, D. F., Walker, T. M., Singh, B., et al. (2002) Monitoring expression of HER-2 on circulating epithelial cells in patients with advanced breast cancer. Int. J. Oncol. 21, 1111–1117.PubMedGoogle Scholar
  6. 6.
    O'Hara, S. M., Moreno, J. G., Zweitzig D. R., Gross, S., Gomella, L. G., and Terstappen, L. W. (2004) Multigene reverse transcription-PCR profiling of circulating tumor cells in hormone-refractory prostate cancer. Clin. Chem. 50, 826–835.PubMedCrossRefGoogle Scholar
  7. 7.
    Leone, F., Perissinotto, E., Viale, A., et al. (2001) Detection of breast cancer cell contamination in leukapheresis product by real-time quantitative polymerase chain reaction. Bone Marrow Transplant. 27, 517–523.PubMedCrossRefGoogle Scholar
  8. 8.
    Denis, M. G., Lipart, C., Leborgne, J., et al. (1997) Detection of disseminated tumor cells in peripheral blood of colorectal cancer patients. Int. J. Cancer 74, 540–544.PubMedCrossRefGoogle Scholar
  9. 9.
    Fujii, Y., Kageyama, Y., Kawakami, S., Kihara, K., and Oshima, H. (1999) Detection of disseminated urothelial cancer cells in peripheral venous blood by a cytokeratin 20-specific nested reverse transcriptase-polymerase chain reaction. Jpn. J. Cancer Res. 90, 753–757.PubMedGoogle Scholar
  10. 10.
    Tot, T. (2002) Cytokeratins 20 and 7 as biomarkers: usefulness in discriminating primary from metastatic adenocarcinoma. Eur. J. Cancer 38, 758–763.PubMedCrossRefGoogle Scholar
  11. 11.
    Chausovsky, G., Luchansky M., Figer, A., et al. (1999) Expression of cytokeratin 20 in the blood of patients with disseminated carcinoma of the pancreas, colon, stomach, and lung. Cancer 86, 2398–2405.PubMedCrossRefGoogle Scholar
  12. 12.
    Huang, P., Wang, J., Guo, Y., and Xie, W. (2003) Molecular detection of disseminated tumor cells in the peripheral blood in patients with gastrointestinal cancer. J. Cancer Res. Clin. Oncol. 129, 192–198.PubMedGoogle Scholar
  13. 13.
    Wildi, S., Kleeff J., Maruyama, H., et al. (1999) Characterization of cytokeratin 20 expression in pancreatic and colorectal cancer. Clin. Cancer Res. 5, 2840–2847.PubMedGoogle Scholar
  14. 14.
    Champelovier, P., Mongelard, F., and Seigneurin, D. (1999) CK 20 gene expression: technical limits for the detection of circulating tumor cells. Anticancer Res. 19, 2073–2078.PubMedGoogle Scholar
  15. 15.
    Schuster, R., Max, N., Mann, B., et al. (2004) Quantitative real-time RT-PCR for detection of disseminated tumor cells in peripheral blood of patients with colorectal cancer using different mRNA markers. Int. J. Cancer 108, 219–227.PubMedCrossRefGoogle Scholar
  16. 16.
    Zieglschmid, V., Hollmann C., Gutierrez, B., et al. (2005) Combination of immunomagnetic enrichment with multiplex RT-PCR analysis for the detection of disseminated tumor cells. Anticancer Res. 25, 1803–1810.PubMedGoogle Scholar
  17. 17.
    Demel, U., Tilz, G. P., Foeldes-Papp, Z., Gutierrez, B., Albert, W. H., and Bucher, O. (2004) Detection of tumour cells in the peripheral blood of patients with breast cancer. Development of a new sensitive and specific immunomolecular assay. J. Exp. Clin. Cancer Res. 23, 465–468.PubMedGoogle Scholar
  18. 18.
    (2001) LightCycler-HER2/neu RNA Quantification Kit. BIOCHEMICA 4, 12.Google Scholar
  19. 19.
    Mayfield, S., Vaughn, J. P., and Kute, T. E. (2001) DNA strand breaks and cell cycle perturbation in herceptin treated breast cancer cell lines. Breast Cancer Res. Treat. 70, 123–129.PubMedCrossRefGoogle Scholar
  20. 20.
    Soong, R., Beyser, K., Basten, O., Kalbe, A., Rueschoff, J., and Tabiti, K. (2001) Quantitative reverse transcription-polymerase chain reaction detection of cytokeratin 20 in noncolorectal lymph nodes. Clin. Cancer Res. 7, 3423–3429.PubMedGoogle Scholar
  21. 21.
    Chretien, S., Dubart, A., Beaupain, D., et al. (1988) Alternative transcription and splicing of the human prophobilinogen deaminase gene result, either in tissue-specific or in housekeeping expression. Proc. Natl. Acad. Sci. USA 85, 6–10.PubMedCrossRefGoogle Scholar
  22. 22.
    Grandchamp, B., Picat, C., de Rooij, F., et al. (1989) A point mutation G→A in exon 12 of the porphobilinogen deaminase gene results in exon skipping and is responsible for acute intermittent porphyria. Nucleic Acids Res. 17, 6637–6649.PubMedCrossRefGoogle Scholar
  23. 23.
    Ladanyi, A., Soong, R., Tabiti, K., Molnar, B., and Tulassay, Z. (2001) Quantitative reverse transcription-PCR comparison of tumor cell enrichment methods. Clin. Chem. 47, 1860–1863.PubMedGoogle Scholar
  24. 24.
    Vlems, F., Soong, R., Diepstra, H., et al. (2002) Effect of blood sample handling and reverse transcriptase-polymerase chain reaction assay sensitivity on detection of CK20 expression in healthy donor blood. Diagn. Mol. Pathol. 11, 90–97.PubMedCrossRefGoogle Scholar
  25. 25.
    Jung, R., Petersen, K., Kruger, W., et al. (1999) Detection of micrometastasis by cytokeratin 20 RT-PCR is limited due to stable background transcription in granulocytes. Br. J. Cancer 81, 870–873.PubMedCrossRefGoogle Scholar
  26. 26.
    Krger, W., Jung, R., Krĝer, N., et al. (2000) Sensitivity of assays designed for the detection of disseminated epithelial tumor cells is influenced by cell separation methods. Clin. Chem. 46, 435–436.Google Scholar
  27. 27.
    Taback, B., Chan, A. D., Kuo, C. T., et al. (2001) Detection of occult metastatic breast cancer cells in blood by a multimolecular marker assay: correlation with clinical stage of disease. Cancer Res. 61, 8845–8850.PubMedGoogle Scholar
  28. 28.
    Ady, N., Morat, L., Fizazi, K., et al. (2004) Detection of HER-2/neu-positive circulating epithelial cells in prostate cancer patients. Br. J. Cancer 90, 443–448.PubMedCrossRefGoogle Scholar
  29. 29.
    Meng, S., Tripathy, D., Shete, S., et al. (2004) HER-2 gene amplification can be acquired as breast cancer progresses. Proc. Natl. Acad. Sci. U.S.A. 101, 9393–9398.PubMedCrossRefGoogle Scholar
  30. 30.
    Bartlett, J. M., Brawley, D., Grigor, K., Munro, A. F., Dunne, B., and Edwards, J. (2005) Type I receptor tyrosine kinases are associated with hormone escape in prostate cancer. J. Pathol. 205, 522–529.PubMedCrossRefGoogle Scholar
  31. 31.
    Slamon, D. J., Godolphin, W., Jones, L. A., et al. (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712.PubMedCrossRefGoogle Scholar
  32. 32.
    Bustin, S. A. and Nolan, T. (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J. Biomol. Tech. 15, 155–166.PubMedGoogle Scholar
  33. 33.
    Stahlberg, A., Hakansson, J., Xian, X., Semb, H., and Kubista, M. (2004) Properties of the reverse transcription reaction in mRNA quantification. Clin. Chem. 50, 509–515.PubMedCrossRefGoogle Scholar
  34. 34.
    Weitz, J., Kienle, P., Lacroix, J., et al., (1998) Dissemination of tumor cells in patients undergoing surgery for colorectal cancer. Clin. Cancer Res. 4, 343–348.PubMedGoogle Scholar
  35. 35.
    van Eekelen, J. A., Shammas, F. V., Wee, L., Heikkila, R., and Osland, A. (2000) Quantitative analysis of cytokeratin 20 gene expression using RT-PCR and capillary electrophoresis with fluorescent DNA detection. Clin. Biochem. 33, 457–464.PubMedCrossRefGoogle Scholar
  36. 36.
    Coussens, L., Yang-Feng, T. L., Liao, Y. C., et al. (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230, 1132–1139.PubMedCrossRefGoogle Scholar
  37. 37.
    Nezu, M., Sasaki, H., Kuwahara, Y., et al., (1999) Identification of a novel promoter and exons of the c-ERBB-2 gene. Biochem. Biophys. Res. Commun. 258, 499–505.PubMedCrossRefGoogle Scholar
  38. 38.
    Scott, G. K., Robles, R., Park, J. W., et al. (1993) A truncated intracellular HER2/neur receptor produced by alternative RNA processing affects growth of human carcinoma cells. Mol. Cell. Biol. 13, 2247–2257.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Silke Lankiewicz
    • 1
  • Bertha Gutierrez Rivero
    • 1
  • Oliver Böcher
    • 1
  1. 1.AdnaGen AGLangenhagenGermany

Personalised recommendations