Skip to main content
Log in

Mouse models of triplet repeat diseases

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Triplet repeat expansions were first discovered in 1991 and since then have been found to be the mutation underlying a range of neurodegenerative, neuromuscular, and cognitive disorders including fragile X syndrome, myotonic dystrophy, Friedreich's ataxia, and the polyglutamine disorders that include Huntington's disease. The repeats exert their detrimental effects through different molecular mechanisms dependent on whether they are located in coding or noncoding regions of the gene in question. During the past 10 yr, a wide range of strategies have been used to successfully establish mouse models for all of these disorders. This review presents an overview of these mouse models, discusses the insights into the molecular pathogenesis of these disorders that have been gained from their analysis and the strategies that are being used to uncover novel therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verker, A. J., Pieretti, M., Sutcliffe, J. S., et al. (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914.

    Article  Google Scholar 

  2. La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E., and Fischbeck, K. H. (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79.

    Article  PubMed  Google Scholar 

  3. Campuzano, V., Montermini, L., Molto, M. D., et al. (1996) Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427.

    Article  PubMed  CAS  Google Scholar 

  4. Gusella, J. F. and MacDonald, M. E. (2000) Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat. Rev. Neurosci. 1, 109–115.

    Article  PubMed  CAS  Google Scholar 

  5. Mankodi, A. and Thornton, C. A. (2002) Myotonic syndromes. Curr. Opin. Neurol. 15, 545–552.

    Article  PubMed  Google Scholar 

  6. Koob, M. D., Moseley, M. L., Schut, L. J., et al. (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat. Genet. 21, 379–384.

    Article  PubMed  CAS  Google Scholar 

  7. O'Donnell, W. T. and Warren, S. T. (2002) A decade of molecular studies of fragile X syndrome. Annu. Rev. Neurosci. 25, 315–338.

    Article  PubMed  CAS  Google Scholar 

  8. Jin, P. and Warren, S. T. (2003) New insights into fragile X syndrome: from molecules to neurobehaviors. Trends Biochem. Sci. 28, 152–158.

    Article  PubMed  CAS  Google Scholar 

  9. The Dutch-Belgian Fragile X Consortium (1994) Fmrl knockout mice: a model to study fragile X mental retardation. Cell 78, 23–33.

    Google Scholar 

  10. Frank Kooy, R. (2003) Of mice and the fragile X syndrome. Trends Genet. 19, 148–154.

    Article  PubMed  CAS  Google Scholar 

  11. Frankland, P. W., Wang, Y., Rosner, B., et al. (2004) Sensorimotor gating abnormalities in young males with fragile X syndrome and Fmrl-knockout mice. Mol. Psychiatry 9, 417–425.

    Article  PubMed  CAS  Google Scholar 

  12. Slegtenhorst-Eegdeman, K. E., de Rooij, D. G., Verhoef-Post, M., et al. (1998) Macroorchidism in FMR1 knockout mice is caused by increased Sertoli cell proliferation during testicular development. Endocrinology 139, 156–162.

    Article  PubMed  CAS  Google Scholar 

  13. Comery, T. A., Harris, J. B., Willems, P. J., et al. (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc. Natl. Acad. Sci. USA 94, 5401–5404.

    Article  PubMed  CAS  Google Scholar 

  14. Irwin, S. A., Idupulapati, M., Gilbert, M. E., et al. (2002) Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am. J. Med. Genet. 111, 140–146.

    Article  PubMed  Google Scholar 

  15. Galvez, R., Gopal, A. R. and Greenough, W. T. (2003) Somatosensory cortical barrel dendritic abnormalities in a mouse model of the fragile X mental retardation syndrome. Brain Res. 971, 83–89.

    Article  PubMed  CAS  Google Scholar 

  16. Chen, L. and Toth, M. (2001) Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience 103, 1043–1050.

    Article  PubMed  CAS  Google Scholar 

  17. Hagerman, R. J., Leehey, M., Heinrichs, W., et al. (2001) Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57, 127–130.

    PubMed  CAS  Google Scholar 

  18. Hagerman, P. J. and Hagerman, R. J. (2004) Fragile X-associated tremor/ataxia syndrome (FXTAS)? Ment. Retard. Dev. Disabil. Res. Rev. 10, 25–30.

    Article  PubMed  Google Scholar 

  19. Jacquemont, S., Hagerman, R. J., Leehey, M., et al. (2003) Fragile X premutation tremor/ataxia syndrome: molecular, clinical, and neuroimaging correlates. Am. J. Hum. Genet. 72, 869–878.

    Article  PubMed  CAS  Google Scholar 

  20. Tassone, F., Hagerman, R. J., Taylor, A. K., Gane, L. W., Godfrey, T. E., and Hagerman, P. J. (2000) Elevated levels of FMR1 mRNA in carrier males: a new mechanism of involvement in the fragile-X syndrome. Am. J. Hum. Genet. 66, 6–15.

    Article  PubMed  CAS  Google Scholar 

  21. Kenneson, A., Zhang, F., Hagedorn, C. H., and Warren, S. T. (2001) Reduced FMRP and increased FMR1 transciption is proportionally associated with CGG repeat number in intermediate-length and premutation carriers. Hum. Mol. Genet., 10, 1449–1454.

    Article  PubMed  CAS  Google Scholar 

  22. Greco, C. M., Hagerman, R. J., Tassone, F., et al. (2002) Neuronal intranuclear inclusions in a new cerebellar tremor/ataxia syndrome among fragile X carriers. Brain 125, 1760–1771.

    Article  PubMed  CAS  Google Scholar 

  23. Bontekoe, C. J., Bakker, C. E., Nieuwenhiizen, I. M. et al. (2001) Instability of a (CGG)98 repeat in the Fmrl promoter. Hum. Mol. Genet. 10, 1693–1699.

    Article  PubMed  CAS  Google Scholar 

  24. Willemsen, R., Hoogeveen-Westerveld, M., Reis, S., et al. (2003) The FMR1 CGG repeat mouse displays ubiquitin-positive intranuclear neuronal inclusions: implications for the cerebellar tremor/ataxia syndrome. Hum. Mol. Genet. 12, 949–959.

    Article  PubMed  CAS  Google Scholar 

  25. Van Dam, D., Errijgers, V., Kooy, R. F., et al. (2005) Cognitive decline, neuromotor and behavioural disturbances in a mouse model for fragile-X-associated tremor/ataxia syndrome (FXTAS). Behav. Brain Res. 162, 233–239.

    Article  PubMed  CAS  Google Scholar 

  26. Patel, P. I. and Isaya, G. (2001) Freidreich ataxia: from GAA triplet-repeat expansion to frataxin deficiency. Am. J. Hum. Genet. 69, 15–24.

    Article  PubMed  CAS  Google Scholar 

  27. Puccio, H. and Koenig, M. (2002) Freidreich ataxia: a paradigm for mitochondrial diseases. Curr. Opin. Genet. Dev. 12, 272–277.

    Article  PubMed  CAS  Google Scholar 

  28. Cossee, M., Puccio, H., Gansmuller, A., et al. (2000) Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum. Mol. Genet. 9, 1219–1226.

    Article  PubMed  CAS  Google Scholar 

  29. Puccio, H., Simon, D., Cossee, M., et al. (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat. Genet. 27, 181–186.

    Article  PubMed  CAS  Google Scholar 

  30. Simon, D., Seznec, H., Gansmuller, A., et al. (2004) Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. J. Neurosci. 24, 1987–1995.

    Article  PubMed  CAS  Google Scholar 

  31. Miranda, C. J., Santos, M. M., Ohshima, K., et al. (2002) Frataxin knockin mouse. FEBS Lett. 512, 291–297.

    Article  PubMed  CAS  Google Scholar 

  32. Pook, M. A., Al-Mahdawi, S., Carroll, C. J., et al. (2001) Rescue of the Freidreich's ataxia knockout mouse by human YAC transgenesis. Neurogenetics 3, 185–193.

    PubMed  CAS  Google Scholar 

  33. Sarsero, J. P., Li, L., Holloway, T. P., et al. (2004) Human BAC-mediated rescue of the Friedreich ataxia knockout mutation in transgenic mice. Mamm. Genome 15, 370–382.

    Article  PubMed  CAS  Google Scholar 

  34. Miranda, C. J., Santos, M. M., Ohshima, K., Tessaro, M., Sequeiros, J., and Pandolfo, M. (2004) Frataxin overexpressing mice. FEBS Lett. 572, 281–288.

    Article  PubMed  CAS  Google Scholar 

  35. Meola, G. (2000) Myotonic dystrophies. Curr. Opin. Neurol. 13, 519–525.

    Article  PubMed  CAS  Google Scholar 

  36. Ranum, L. P. and Day, J. W. (2002) Dominantly inherited, non-coding microsatellite expansion disorders. Curr. Opin. Genet. Dev. 12, 266–271.

    Article  PubMed  CAS  Google Scholar 

  37. Reddy, S., Smith, D. B., Rich, M. M., et al. (1996) Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat. Genet. 13, 325–335.

    Article  PubMed  CAS  Google Scholar 

  38. Jansen, G., Groenen, P. J., Bachner, D., et al. (1996) Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nat. Genet. 13, 316–324.

    Article  PubMed  CAS  Google Scholar 

  39. Mounsey, J. P., Mistry, D. J., Ai, C. W., Reddy, S. and Moorman, J. R. (2000) Skeletal muscle sodium channel gating in mice deficient in myotonic dystrophy protein kinase. Hum. Mol. Genet. 9, 2313–2320.

    PubMed  CAS  Google Scholar 

  40. Berul, C. I., Maguire, C. T., Aronovitz, M. J., et al. (1999) DMPK dosage alterations result in atrioventricular conduction abnormalities in a mouse myotonic dystrophy model. J. Clin. Invest. 103, R1-R7.

    Article  PubMed  CAS  Google Scholar 

  41. Sarkar, P. S., Appukuttan, B., Han, J., et al. (2000) Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts, Nat. Genet. 25, 110–114.

    Article  PubMed  CAS  Google Scholar 

  42. Klesert, T. R., Cho, D. H., Clark, J. I., et al. (2000) Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy. Nat. Genet. 25, 105–109.

    Article  PubMed  CAS  Google Scholar 

  43. Wakimoto, H. Maguire, C. T., Sherwood, M. C., et al. (2002) Characterization of cardiac conduction system abnormalities in mice with targeted disruption of Six5 gene. J. Interv. Card. Electrophysiol. 7, 127–135.

    Article  PubMed  Google Scholar 

  44. Personius, K. E., Nautiyal, J., and Reddy, S. (2005) Myotonia and muscle contractile properties in mice with SIX5 deficiency. Muscle Nerve 31, 503–505.

    Article  PubMed  CAS  Google Scholar 

  45. Liquori, C. L., Ricker, K., Moseley, M. L., et al. (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293, 864–867.

    Article  PubMed  CAS  Google Scholar 

  46. Ranum, L. P. and Day, J. W. (2004) Pathogenic RNA repeats: an expanding role in genetic disease. Trends Genet. 20, 506–512.

    Article  PubMed  CAS  Google Scholar 

  47. Mankodi, A., Logigian, E., Callahan, L., et al., (2000) Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289, 1769–1773.

    Article  PubMed  CAS  Google Scholar 

  48. Mankodi, A., Takahashi, M. P., Jiang, H., et al. (2002) Expanded CUG repeats trigger aberrant splicing of CIC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell 10, 35–44.

    Article  PubMed  CAS  Google Scholar 

  49. Seznec, H., Agbulut, O., Sergeant, N., et al. (2001) Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. Hum. Mol. Genet. 10, 2717–2726.

    Article  PubMed  CAS  Google Scholar 

  50. Storbeck, C. J., Drmanic, S., Daniel, K., et al. (2004) Inhibition of myogenesis in transgenic mice expressing the human DMPK 3′-UTR. Hum. Mol. Genet. 13, 589–600.

    Article  PubMed  CAS  Google Scholar 

  51. Kanadia, R. N., Johnstone, K. A., Mankodi, A., et al. (2003) A muscleblind knockout model for myotonic dystrophy. Science 302, 1978–1980.

    Article  PubMed  CAS  Google Scholar 

  52. Ho, T. H., Bundman, D., Armstrong, D. L., and Cooper, T. A. (2005) Transgenic mice expressing CUG-BP1 reproduce s;licing mis-regulation observed in myotonic dystrophy. Hum. Mol. Genet. 14, 1539–1547.

    Article  PubMed  CAS  Google Scholar 

  53. Mangiarini, L., Sathasivam, K., Seller, M., et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506.

    Article  PubMed  CAS  Google Scholar 

  54. Schilling, G., Becher, M. W., Sharp, A. H., et al. (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin [published erratum appears in Hum. Mol. Genet.. 1999;8:943]. Hum. Mol. Genet. 8, 397–407.

    Article  PubMed  CAS  Google Scholar 

  55. Laforet, G. A., Sapp, E., Chase, K., et al. (2001) Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington's disease. J. Neurosci. 21, 9112–9123.

    PubMed  CAS  Google Scholar 

  56. Gu, X., Li, C., Wei, W., et al. (2005) Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron 46, 433–444.

    Article  PubMed  CAS  Google Scholar 

  57. Reddy, P. H., Williams, M., Charles, V., et al. (1998) Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat. Genet. 20, 198–202.

    Article  PubMed  CAS  Google Scholar 

  58. Hodgson, J. G., Agopyan, N., Gutekunst, C. A., et al. (1999) A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23, 181–192.

    Article  PubMed  CAS  Google Scholar 

  59. Slow, E. J., van Raamsdonk, J., Rogers, D., et al. (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 12, 1555–1567.

    Article  PubMed  CAS  Google Scholar 

  60. Shelbourne, P. F., Killeen, N., Hevner, R. F., et al. (1999) A Huntington's disease CAG expansion at the murine Hdh locus is unstable and associated with behavioural abnormalities in mice. Hum. Mol. Genet. 8, 763–774.

    Article  PubMed  CAS  Google Scholar 

  61. Levine, M. S., Klapstein, G. J., Koppel, A., et al. (1999) Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knock in mouse models of Huntington's disease. J. Neurosci,. Res. 58, 515–532.

    Article  CAS  Google Scholar 

  62. Wheeler, V. C., White, J. K., Gutekunst, C. A., et al. (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in H dhQ92 and HdhQ111 knock- in mice. Hum. Mol. Genet. 9., 503–513.

    Article  PubMed  CAS  Google Scholar 

  63. Lin, C. H., Tallaksen-Greene, S., Chien, W. M. et al. (2001) Neurological abnormalities in a knockin mouse model of Huntington's disease. Hum. Mol. Genet. 10, 137–144.

    Article  PubMed  CAS  Google Scholar 

  64. Burright, E. N., Clark, H. B., Servadio, A., et al. (1995) SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82, 937–948.

    Article  PubMed  CAS  Google Scholar 

  65. Huynh, D. P., Figueroa, K., Hoang, N., and Pulst, S. M. (2000) Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat. Genet. 26, 44–50.

    Article  PubMed  CAS  Google Scholar 

  66. Cemal, C. K., Carroll, C. J., Lawrence, L., et al. (2002) YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Hum. Mol. Genet. 11, 1075–1094.

    Article  PubMed  CAS  Google Scholar 

  67. Yvert, G., Lindenberg, K. S., Picaud, S., Landwehrmeyer, G. B., Sahel, J. A., and Mandel, J. L. (2000) Expanded polyglutamines induce neurode-generation and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice. Hum. Mol. Genet. 9, 2491–2506.

    Article  PubMed  CAS  Google Scholar 

  68. Yvert, G., Lindenberg, K. S., Devys, D., Helmlinger, D., Landwehrmeyer, G. B., and Mandel, J. L. (2001) SCA7 mouse models show selective stabilization of mutant ataxin-7 and similar cellular responses in different neuronal cell types. Hum. Mol. Genet. 10, 1679–1692.

    Article  PubMed  CAS  Google Scholar 

  69. La Spada, A. R., Fu, Y., Sopher, B. L., et al. (2001) Polyglutamine-expanded ataxin-7 antagonizes crx function and induces cone-rod dystrophy in a mouse model of sca7. Neuron 31, 913–927.

    Article  PubMed  Google Scholar 

  70. Watase, K., Weeber, E. J., Xu, B., et al. (2002) A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron 34, 905–919.

    Article  PubMed  CAS  Google Scholar 

  71. Yoo, S. Y., Pennesi, M. E., Weeber, E. J., et al. (2003) SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron, 37, 383–401.

    Article  PubMed  CAS  Google Scholar 

  72. Schilling, G., Wood, J. D., Duan, K., et al. (1999) Nuclear accumulation of truncated atrophin-1 fragments in a transgenic mouse model of DRPLA. Neuron 24, 275–286.

    Article  PubMed  CAS  Google Scholar 

  73. Sato, T., Oyake, M., Nakamura, K., et al. (1999) Transgenic mice harboring a full-length human mutant DRPLA gene exhibit age-dependent intergenerational and somatic instabilities of CAG repeats comparable with those in DRPLA patients. Hum. Mol. Genet. 8, 99–106.

    Article  PubMed  CAS  Google Scholar 

  74. Abel, A., Walcott, J., Woods, J., Duda, J., and Merry, D. E. (2001) Expression of expanded repeat androgen receptor produces neurologic disease in transgenic mice. Hum. Mol. Genet. 10, 107–116.

    Article  PubMed  CAS  Google Scholar 

  75. Adachi, H., Kume, A., Li, M., et al. (2001) Transgenic mice with an expanded CAG repeat controlled by the human AR promoter show polyglutamine nuclear inclusions and neuronal dysfunction without neuronal cell death. Hum. Mol. Genet. 10, 1039–1048.

    Article  PubMed  CAS  Google Scholar 

  76. Katsuno, M., Adachi, H., Kume, A., et al. (2002) Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron 35, 843–854.

    Article  PubMed  CAS  Google Scholar 

  77. McManamny, P., Chy, H. S., Finkelstein, D. I., et al. (2002) A mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet. 11, 2103–2111.

    Article  PubMed  CAS  Google Scholar 

  78. Sopher, B. L., Thomas, P. S., Jr., LaFevre-Bernt, M. A., et al. (2004) Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration, Neuron 41, 687–699.

    Article  PubMed  CAS  Google Scholar 

  79. Davies, S. W., Turmaine, M., Cozens, B. A., et al. (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548.

    Article  PubMed  CAS  Google Scholar 

  80. Li, H., Li, S. H., Cheng, A. L., Mangiarini, L., Bates, G. P., and Li, X. J. (1999) Ultrastructural localization and progressive formation of neuropil aggregates in Huntington's disease transgenic mice. Hum. Mol. Genet. 8, 1227–1236.

    Article  PubMed  CAS  Google Scholar 

  81. Skinner, P. J., Koshy, B. T., Cummings, C. J., et al. (1997) Ataxin-1 with an expanded glutamine tract alters nuclear matrix- associated structures [published erratum appears in Nature 1998;391:307]. Nature 389, 971–974.

    Article  PubMed  CAS  Google Scholar 

  82. DiFiglia, M., Sapp, E., Chase, K. O., et al. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993.

    Article  PubMed  CAS  Google Scholar 

  83. Gutekunst, C. A., Li, S. H., Yi, H., et al. (1999) Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J. Neurosci. 19, 2522–2534.

    PubMed  CAS  Google Scholar 

  84. Schilling, G., Jinnah, H. A., Gonzales, V., et al. (2001) Distinct behavioral and neuropathological abnormalities in transgenic mouse models of HD and DRPLA. Neurobiol. Dis. 8, 405–418.

    Article  PubMed  CAS  Google Scholar 

  85. Cummings, C. J., Sun, Y., Opal, P., et al. (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum. Mol. Genet. 10, 1511–1518.

    Article  PubMed  CAS  Google Scholar 

  86. Adachi, H., Katsuno, M., Minamiyama, M., et al. (2003) Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J. Neurosci. 23, 2203–2211.

    PubMed  CAS  Google Scholar 

  87. Hansson, O., Nylandsted, J., Castilho, R. F., Leist, M., Jaattela, M., and Brundin, P. (2003) Overexpression of heat shock protein 70 in R6/2 Huntington's disease mice has only modest effects on disease progression. Brain Res. 970, 47–57.

    Article  PubMed  CAS  Google Scholar 

  88. Hay, D. G., Sathasivam, K., Tobaben, S., et al. (2004) Progressive decrease in chaperone protein levels in a mouse model of huntington's disease and induction of stress proteins as a therapeutic approach. Hum. Mol. Genet. 13, 1389–1405.

    Article  PubMed  CAS  Google Scholar 

  89. Helmlinger, D., Bonnet, J., Mandel, J. L., Trottier, Y., and Devys, D. (2004) Hsp70 and Hsp40 chaperones do not modulate retinal phenotype in SCA7 mice. J. Biol. Chem. 279, 55969–55977.

    Article  PubMed  CAS  Google Scholar 

  90. Cha, J. H., Kosinski, C. M., Kerner, J. A., et al. (1998) Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. Proc. Natl. Acad. Sci. USA 95, 6480–6485.

    Article  PubMed  CAS  Google Scholar 

  91. Luthi-Carter, R., Strand, A., Peters, N. L., et al. (2000) Decreased expression of striatal signaling genes in a mouse model of Huntington's disease. Hum. Mol. Genet. 9, 1259–1271.

    Article  PubMed  CAS  Google Scholar 

  92. Lin, X., Antalffy, B., Kang, D., Orr, H. T., and Zoghbi, H. Y. (2000) Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat. Neurosci. 3, 157–163.

    Article  PubMed  CAS  Google Scholar 

  93. Ferrante, R. J., Andreassen, O. A., Jenkins, B. G., et al. (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease. J. Neurosci. 20, 4389–4397.

    PubMed  CAS  Google Scholar 

  94. Andreassen, O. A., Dedeoglu, A., Ferrante, R. J., et al. (2001) Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington's disease. Neurobiol. Dis. 8, 479–491.

    Article  PubMed  CAS  Google Scholar 

  95. Ferrante, R. J., Andreassen, O. A., Dedeoglu, A., et al. (2002) Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington's disease. J. Neurosci. 22, 1592–1599.

    PubMed  CAS  Google Scholar 

  96. Schilling, G., Coonfield, M. L., Ross, C. A., and Borchelt, D. R. (2001) Coenzyme Q10 and remacemide hydrochloride ameliorate motor deficits in a Huntington's disease transgenic mouse model. Neurosci. Lett. 315, 149–153.

    Article  PubMed  CAS  Google Scholar 

  97. Schiefer, J., Landwehrmeyer, G. B., Luesse, H. G., et al. (2002) Riluzole prolongs survival time and alters nuclear inclusion formation in a transgenic mouse model of Huntington's disease. Mov. Disord. 17, 748–757.

    Article  PubMed  Google Scholar 

  98. Andreassen, O. A., Ferrante, R. J., Dedeoglu, A., and Beal, M. F. (2001) Lipoic acid improves survival in transgenic mouse models of Huntington's disease. Neuroreport 12, 3371–3373.

    Article  PubMed  CAS  Google Scholar 

  99. Klivenyi, P., Ferrante, R. J., Gardian, G., Browne, S., Chabrier, P. E., and Beal, M. F. (2003) Increased survival and neuroprotective effects of BN82451 in a transgenic mouse model of Huntington's disease. J. Neurochem. 86, 267–272.

    Article  PubMed  CAS  Google Scholar 

  100. Clifford, J. J., Drago, J., Natoli, A. L. et al. (2002) Essential fatty acids given from conception prevent topographies of motor deficit in a transgenic model of Huntington's disease. Neuroscience 109, 81–88.

    Article  PubMed  CAS  Google Scholar 

  101. Karpuj, M. V., Becher, M. W., Springer, J. E., et al. (2002) Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat. Med. 8, 143–149.

    Article  PubMed  CAS  Google Scholar 

  102. Dedeoglu, A., Kubilus, J. K., Jeitner, T. M., et al. (2002) Therapeutic effects of cystamine in a murine model of Huntington's disease. J. Neurosci. 22, 8942–8950.

    PubMed  CAS  Google Scholar 

  103. Bailey, C. D. and Johnson, G. V. (2005) The protective effects of cystamine in the R6/2 Huntington's disease mouse involve mechanisms other than the inhibition of tissue transglutaminase. Neurobiol. Aging, in press.

  104. Sanchez, I., Mahlke, C., and Yuan, J. (2003) Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421, 373–379.

    Article  PubMed  CAS  Google Scholar 

  105. Tanaka, M., Machida, Y., Niu, S., et al. (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat. Med. 10, 148–154.

    Article  PubMed  CAS  Google Scholar 

  106. Hockly, E., Richon, V. M., Woodman, B., et al. (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl. Acad. Sci. USA 100, 2041–2046.

    Article  PubMed  CAS  Google Scholar 

  107. Ferrante, R. J., Kubilus, J. K., Lee, J., et al. (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J. Neurosci. 23, 9418–9427.

    PubMed  CAS  Google Scholar 

  108. Gardian, G., Browne, S. E., Choi, D. K., et al. (2005) Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington's disease. J. Biol. Chem. 280, 556–563.

    PubMed  CAS  Google Scholar 

  109. Ravikumar, B., Vacher, C., Berger, Z., et al. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595.

    Article  PubMed  CAS  Google Scholar 

  110. Minamiyama, M., Katsuno, M., Adachi, H., et al. (2004) Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet. 13, 1183–1192.

    Article  PubMed  CAS  Google Scholar 

  111. Chen, M., Ona, V. O., Li, M., et al. (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. 6, 797–801.

    Article  PubMed  CAS  Google Scholar 

  112. Smith, D. L., Woodman, B., Mahal, A., et al. (2003) Minocycline and doxycycline are not beneficial in a model of Huntington's disease. Ann. Neurol. 54, 186–196.

    Article  PubMed  CAS  Google Scholar 

  113. Heiser, V., Engemann, S., Brocker, W., et al., (2002) Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington's disease by using an automated filter retardation assay. Proc. Natl. Acad. Sci. USA 99 Suppl 4, 16400–16406.

    Article  PubMed  CAS  Google Scholar 

  114. Katsuno, M., Adachi, H., Doyu, M., et al. (2003) Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nat. Med. 9, 768–773.

    Article  PubMed  CAS  Google Scholar 

  115. Chevalier-Larsen, E. S., O'Brien, C. J., et al. (2004) Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy. J. Neurosci. 24, 4778–4786.

    Article  PubMed  CAS  Google Scholar 

  116. Xia, H., Mao, Q., Eliason, S. L., et al. (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat. Med. 10, 816–820.

    Article  PubMed  CAS  Google Scholar 

  117. Harper, S. Q., Staber, P. D., He, X., et al. (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc. Natl. Acad. Sci. USA 102, 5820–5825.

    Article  PubMed  CAS  Google Scholar 

  118. Yamamoto, A., Lucas, J. J., and Hen, R. (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101, 57–66.

    Article  PubMed  CAS  Google Scholar 

  119. Zu, T., Duvick, L. A., Kaytor, M. D., et al. (2004) Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J. Neurosci. 24, 8853–8861.

    Article  PubMed  CAS  Google Scholar 

  120. Peier, A. M., and Nelson, D. L. (2002) Instability of a premutation-sized CGG repeat in FMR1 YAC transgenic mice. Genomics 80, 423–432.

    Article  PubMed  CAS  Google Scholar 

  121. Al-Mahdawi, S., Pinto, R. M., Ruddle, P., Carroll, C., Webster, Z., and Pook, M. (2004) GAA repeat instability in Friedreich ataxia YAC transgenic mice. Genomics 84, 301–310.

    Article  PubMed  CAS  Google Scholar 

  122. Mangiarini, L., Sathasivam, K., Mahal, A., Mott, R., Seller, M., and Bates, G. P. (1997) Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation. Nat. Genet. 15, 197–200.

    Article  PubMed  CAS  Google Scholar 

  123. Wheeler, V. C., Auerbach, W., White, J. K., et al. (1999) Length-dependent gametic CAG repeat instability in the Huntington's disease knockin mouse. Hum. Mol. Genet. 8, 115–122.

    Article  PubMed  CAS  Google Scholar 

  124. Kaytor, M. D., Burright, E. N., Duvick, L. A., Zoghbi, H. Y., and Orr, H. T. (1997) Increased trinucleotide repeat instability with advanced maternal age. Hum. Mol. Genet. 6, 2135–2139.

    Article  PubMed  CAS  Google Scholar 

  125. Lorenzetti, D., Watase, K., Xu, B., Matzuk, M. M., Orr, H. T., and Zoghbi, H. Y. (2000) Repeat instability and motor incoordination in mice with a targeted expanded CAG repeat in the Sca1 locus. Hum. Mol. Genet. 9, 779–785.

    Article  PubMed  CAS  Google Scholar 

  126. Kennedy, L., and Shelbourne, P. F. (2000) Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington's disease? Hum. Mol. Genet. 9, 2539–2544.

    Article  PubMed  CAS  Google Scholar 

  127. Telenius, H., Kremer, B., Goldberg, Y. P., et al. (1994) Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm [published erratum appears in Nat. Genet. 1994;7:113]. Nat. Genet. 6, 409–414.

    Article  PubMed  CAS  Google Scholar 

  128. Kennedy, L., Evans, E., Chen, C. M., et al. (2003) Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis. Hum. Mol. Genet. 12, 3359–3367.

    Article  PubMed  CAS  Google Scholar 

  129. Monckton, D. G., Coolbaugh, M. I., Ashizawa, K. T., Siciliano, M. J., and Caskey, C. T. (1997) Hypermutable myotonic dystrophy CTG repeats in transgenic mice. Nat. Genet. 15, 193–196.

    Article  PubMed  CAS  Google Scholar 

  130. Seznec, H., Lia-Baldini, A. S., Duros, C., et al. (2000) Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability. Hum. Mol. Genet. 9, 1185–1194.

    Article  PubMed  CAS  Google Scholar 

  131. Fortune, M. T., Vassilopoulos, C., Coolbaugh, M. I., Siciliano, M. J., and Monckton, D. G. (2000) Dramatic, expansion-biased, age-dependent, tissue-specific somatic mosaicism in a transgenic mouse model of triplet repeat instability. Hum. Mol. Genet. 9, 439–445.

    Article  PubMed  CAS  Google Scholar 

  132. Pearson, C. E., Ewel, A., Acharya, S. Fishel, R. A., and Sinden, R. R. (1997) Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases. Hum. Mol. Genet. 6, 1117–1123.

    Article  PubMed  CAS  Google Scholar 

  133. Manley, K., Shirley, T. L., Flaherty, L., and Messer, A. (1999) Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat. Genet. 23, 471–473.

    Article  PubMed  CAS  Google Scholar 

  134. Wheeler, V. C., Lebel, L. A., Vrbanac, V., Teed, A., Te Riele, H., and MacDonald, M. E. (2003) Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum. Hum. Mol. Genet. 12, 273–281.

    Article  PubMed  CAS  Google Scholar 

  135. van den Broek, W. J., Nelen, M. R., Wansink, D. G., et al. (2002) Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knockin mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum. Mol. Genet. 11, 191–198.

    Article  PubMed  Google Scholar 

  136. Savouret, C., Brisson, E., Essers, J., et al. (2003) CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J. 22, 2264–2273.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian P. Bates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bates, G.P., Gonitel, R. Mouse models of triplet repeat diseases. Mol Biotechnol 32, 147–158 (2006). https://doi.org/10.1385/MB:32:2:147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:32:2:147

Index Entries

Navigation