Advertisement

Molecular Biotechnology

, Volume 31, Issue 1, pp 85–88 | Cite as

Codon-optimized reading frames facilitate high-level expression of the HIV-1 minor proteins

  • D. S. Anson
  • K. R. Dunning
Hints And Tips

Abstract

We have constructed reading frames for the HIV-1 YU-2 minor proteins Vpr, Vpu, Vif and Nef that are codon-optimized for high-level expression in mammalian cells. We show that, in the absence of the Rev/Rev-response element system, these codon-optimized reading frames result in greatly increased levels of expression of the corresponding proteins in cell culture systems when compared with the native reading frame. Northern blot analysis shows that the increase in expression found with the codon-optimized reading frames is largely owing to increased steady-state mRNA levels.

Index Entries

HIV-1 codon-optimized reading frames expression constructs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schrofelbauer, B., Yu, Q., and Landau, N. R. (2004) New insights into the role of Vif in HIV-1 replication. AIDS Rev. 6, 34–39.PubMedGoogle Scholar
  2. 2.
    Bour, S. and Strebel, K. (2003) The HIV-1 Vpu protein: a multifunctional enhancer of viral particle release. Microbes and Inf. 5, 1029–1039.CrossRefGoogle Scholar
  3. 3.
    Tungaturthi, P. K., Sawaya, B. E., Singh, S. P., et al. (2003) Role of HIV-1 Vpr in AIDS pathogenesis: relevance and implications of intravirion, intracellular and free Vpr. Biomed Pharmacother. 57, 20–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Greenway, A. L., Holloway, G., McPhee, D. A., Ellis, P., Cornall, A., and Lidman, M. (2003) HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication. J. Biosci. 28, 323–335.PubMedCrossRefGoogle Scholar
  5. 5.
    Freed, E. O. (2001). HIV-1 replication. Somat. Cell Mol. Genet. 26, 13–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Fuller, M. and Anson, D. S. (2001) Helper plasmids for production of HIV-1 derived vectors. Hum. Gene Ther. 12, 2085–2097.CrossRefGoogle Scholar
  7. 7.
    Anson, D. S. and Limberis, M. (2004) An improved β-galactosidase reporter gene. J. Biotech. 108, 17–30.CrossRefGoogle Scholar
  8. 8.
    Wagner, R., Graf, M., Bieler, K., Wolf, H., Grunwald, T., Foley, P., and Uberla, K. (2000) Rev-independent expression of synthetic gag-pol genes of human immunodeficiency virus type 1 and simian immunode-ficiency virus: implications for the safety of lentiviral vectors. Hum. Gene Ther. 11, 2403–2413.PubMedCrossRefGoogle Scholar
  9. 9.
    Kotsopoulou, E., Kim, V. N., Kingsman, A. J., Kingsman, S. M., and Mitrophanous K. A. (2000) A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. J. Virol. 74, 4839–4852.PubMedCrossRefGoogle Scholar
  10. 10.
    Gao, F., Li, Y., Decker, J. M., et al. (2003) Codon usage optimization of HIV type 1 subtype C gag, pol, env, and nef genes: in vitro expression and immune responses in DNA-vaccinated mice. AIDS Res Hum Retroviruses 19, 817–823.PubMedCrossRefGoogle Scholar
  11. 11.
    Nguyen, K. L., Llano, M., Akari, H., et al. (2004) Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression. Virology 319, 163–175.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen, C-Y. A. and Shyu, A-B. (1995) AU-rich elements: characterization and importance in mRNA degradation. Trend. Biochem Sci. 20, 465–470.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.Department of Genetic MedicineChildren, Youth, and Women’s Health ServiceNorth Adelaide
  2. 2.Department of PaediatricsUniversity of Adelaide
  3. 3.Department of BiotechnologyFlinders UniversityAdelaide

Personalised recommendations