Advertisement

Molecular Biotechnology

, Volume 30, Issue 1, pp 51–55 | Cite as

Method for recovery of intact DNA for community analysis of marine intertidal microbial biofilms

  • José A. Narváez-Zapata
  • Norma Rodríguez-Ávila
  • Benjamín O. Ortega-Morales
Research Protocol

Abstract

A protocol is described for rapid DNA isolation from marine biofilm microorganisms embedded in large amounts of exopolysaccharides. The method is a modification of the hot phenol protocol used for plants tissues, where nonexpensive and easily available enzymes were used. The method is based on the incubation of biofilm biomass samples in an extraction buffer mixed with phenol preheated at 65°C. The procedure can be completed in 2 h and up to 20 samples can be processed simultaneously with ease and DNA of excellent quality, as shown by successfully amplification of polymerase chain reaction (PCR) products. DNA was recovered from a range of intertidal marine biofilms with varying amounts of exopolysaccharides.

Index Entries

DNA extraction marine biofilms microbial community hot phenol exopolysaccharides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilson, I. G. (1997) Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 63, 3741–3751.PubMedGoogle Scholar
  2. 2.
    Gilbert, P. and Lappin-Scott, H. (2000) Biofilms: united they stand, divided they fall. Microbiol. Today 27, 136–137.Google Scholar
  3. 3.
    Flemming, H. C., Wingender, J., Moritz, R., Brochard, W., and Mayer, C. (1999) Physico-chemical properties of biofilms—a short review. In: Biofilms in the Aquatic Environment (Keevil, C. W., Godfree, A., Holt, D., and Dow, C., eds.). Royal Society of Chemistry, UK, pp. 1–12.Google Scholar
  4. 4.
    Porteus, L. R. and Armstrong, J. L. (1993) A simple mini-method to extract DNA directly from soil for use with polymerase chain reaction amplification. Curr. Microbiol. 27, 115–118.CrossRefGoogle Scholar
  5. 5.
    Gillan, D., Speksnijder, A., Zwart, G., and De Ridder, C. H. (1998) Genetic diversity of the biofilm covering Montacuta ferruginosa (Mollusca, Bivalvia) as evaluated by denaturing gradient gel electrophoresis analysis and cloning of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 64, 3464–3472.PubMedGoogle Scholar
  6. 6.
    Billi, D., Caiola, M. G., Paolozzi, L., and Ghelaridini, P. (1998) A method for DNA extraction from the desert cyanobacterium Chroococcidiopsis and its application to identification of ftsZ. Appl. Environ. Microbiol. 64, 4053–4056.PubMedGoogle Scholar
  7. 7.
    De Vries, S., Hoge, H., and Biseeing, T. (1988) Isolation of total and polysomal RNA from plant tissues. Plant Mol. Biol. Manual B6, 64–71.Google Scholar
  8. 8.
    Narvéz-Zapata, J. A., Flores-Péez, P., Herrera-Valencia, V., Castillo, F., Ku-Cauich, R., Canto-Canché B., et al. (2001) Development of molecular techniques for studying the metabolism of carotenoids in Bixa orellana L. Hortscience 36, 982–986.Google Scholar
  9. 9.
    Garcia-Pichel, F., Lopez-Cortes, A., and Nbel, U. (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado plateau. Appl. Environ. Microbiol. 67, 1902–1910.PubMedCrossRefGoogle Scholar
  10. 10.
    Ortega-Morales, B. O., Narvaez-Zapata, J. A., Schmalenberger, A., Sosa-Lopez, A., and Tebbe, C. (2004) Biofilms fouling ancient limestone Mayan monuments in Uxmal, Mexico: a cultivation-independent analysis. Biofilms 2, 79–91.CrossRefGoogle Scholar
  11. 11.
    Schuler, M. A. and Zielinski, R. E. (1989) RNA isolation from light-and dark-grown seedlings. In: Methods Plant Mol. Biol. (Schuler, M. A. and Zielinski, R. E., eds.). Academic Press, London, pp. 89–96.Google Scholar
  12. 12.
    Sambrook, J. and Rusell, D. (2001) Molecular cloning: a laboratory manual. 3rd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  13. 13.
    Schwieger, F. and Tebbe, C. (1998) A new approach to utilize PCR-single-strand-conformation polymorphisms for 16S rRNA gene-based microbial community analysis. Appl. Environ. Microbiol. 64, 4870–4876.PubMedGoogle Scholar
  14. 14.
    Kumar, R. and Kumar, A. V. (1999) Biodeterioration of stone in tropical environments. Library of Congress, Washington, D.C.Google Scholar
  15. 15.
    Lowry, O. H., Farr, A. L., and Randall, R. J. (1955) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.Google Scholar
  16. 16.
    Ortega-Morales, B. O., López-Corté, A., Hernádez-Duque, G., Crassous, P., and Guezennec, J. (2001) Extracellular polymers of microbial communities colonising limestone surfaces. Methods Enzymol. 336, 331–339.PubMedGoogle Scholar
  17. 17.
    Nagarkar, S. and Williams, G. (1997) Comparative techniques to quantify cyanobacteria dominated epilithic biofilms on tropical rocky shores. Mar. Ecol. Prog. Ser. 154, 281–291.Google Scholar
  18. 18.
    Tandeau de Marsac, N. and Houmard, J. (1988) Complementary chromatic adaptation: physiological conditions and action spectra. Methods Enzymol. 67, 318–328.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • José A. Narváez-Zapata
    • 1
  • Norma Rodríguez-Ávila
  • Benjamín O. Ortega-Morales
  1. 1.Departmento de Microbiologá Ambiental y Biotecnol ogá, Programa de Corrosión del Golfo de MéxicoUniversidad Autónoma de CampecheCampecheMéxico

Personalised recommendations