Molecular Biotechnology

, Volume 29, Issue 1, pp 31–38 | Cite as

Gene expression levels in small specimens from patients detected using oligonucleotide arrays

  • Katrin Hoffmann
  • Martin J. Firth
  • Joseph R. Freitas
  • Nicholas H. de Klerk
  • Ursula R. Kees
Research

Abstract

Large-scale gene expression profiling using microarray technology is often limited by the amount of tissue or cells available. A number of RNA amplification protocols have been published to overcome this problem. However, additional amplification steps can result in both a 3′ bias and poor reproducibility for low abundance transcripts. We performed microarray experiments using HG-U133A GeneChip arrays to ascertain whether less than the recommended amount of RNA can be used, thus avoiding additional amplification steps. In a titration experiment, 2–10 µg of total RNA from a single cryopreserved patient specimen was used to prepare biotinylated cRNA, and the recommended standard amount of 15 µg of each preparation was used for hybridization. Statistical analysis using box plots, correlation coefficients, MvA plots, and concordance percentages revealed almost identical levels of gene expression, independent of the amount of RNA used for target preparation. Most importantly, there was no statistically significant difference when the concordance percentages for low abundance genes were compared, demonstrating that as little as 2 µg of total RNA is sufficient to perform GeneChip analysis.

Index Entries

Microarray oligonucleotide statistical analysis reproducibility primary specimen patients limited RNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lockhart, D. J. and Winzeler, E. A. (2000) Genomics, gene expression and DNA arrays. Nature 405, 827–836.PubMedCrossRefGoogle Scholar
  2. 2.
    Van Gelder, R. N., von Zastrow, M. E., Yool, A., Dement, W. C., Barchas, J. D., and Eberwine, J. H. (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87, 1663–1667.PubMedCrossRefGoogle Scholar
  3. 3.
    Lipshutz, R. J., Fodor, S. P., Gingeras, T. R., and Lockhart, D. J. (1999) High density synthetic oligonucleotide arrays. Nat. Genet. 21, 20–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Lockhart, D. J., Dong, H., Byrne, M. C., et al. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680.PubMedCrossRefGoogle Scholar
  5. 5.
    Baugh, L. R., Hill, A. A., Brown, E. L., and Hunter, C. P. (2001) Quantitative analysis of mRNA amplification by in vitro transcription. Nucleic Acids Res. 29, E29.Google Scholar
  6. 6.
    Luo, L., Salunga, R. C., Guo, H., et al. (1999) Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat. Med. 5, 117–122.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang, E., Miller, L. D., Ohnmacht, G. A., Liu, E. T., and Marincola, F. M. (2000) High-fidelity mRNA amplification for gene profiling. Nat. Biotechnol. 18, 457–459.PubMedCrossRefGoogle Scholar
  8. 8.
    Iscove, N. N., Barbara, M., Gu, M., Gibson, M., Modi, C., and Winegarden, N. (2002) Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat. Biotechnol. 20, 940–943.PubMedCrossRefGoogle Scholar
  9. 9.
    Makrigiorgos, G. M., Chakrabarti, S., Zhang, Y., Kaur, M., and Price, B. D. (2002) A PCR-based amplification method retaining the quantitative difference between two complex genomes. Nat. Biotechnol. 20, 936–939.PubMedCrossRefGoogle Scholar
  10. 10.
    McClintick, J. N., Jerome, R. E., Nicholson, C. R., Crabb, D. W., and Edenberg, H. J. (2003) Reproducibility of oligonucleotide arrays using small smaples. BMC Genomics 4, 4.PubMedCrossRefGoogle Scholar
  11. 11.
    Golub, T. R., Slonim, D. K., Tamayo, P., et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537.PubMedCrossRefGoogle Scholar
  12. 12.
    Virtaneva, K., Wright, F. A., Tanner, S. M., et al. (2001) Expression profiling reveals fundamental biological differences in acute myeloid leukemia with isolated trisomy 8 and normal cytogenetics. Proc. Natl. Acad. Sci. USA 98, 1124–1129.PubMedCrossRefGoogle Scholar
  13. 13.
    Mahadevappa, M. and Warrington, J. A. (1999) A high-density probe array sample preparation method using 10- to 100-fold fewer cells. Nat. Biotechnol. 17, 1134–1136.PubMedCrossRefGoogle Scholar
  14. 14.
    Ihaka, R. and Gentleman, R. (1996) R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314.CrossRefGoogle Scholar
  15. 15.
    Irizarry, R. A., Hobbs, B., Collin, F., et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264.PubMedCrossRefGoogle Scholar
  16. 16.
    Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L. M., Hobbs, B., and Speed, T. P. (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15.Google Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Katrin Hoffmann
    • 1
  • Martin J. Firth
    • 2
  • Joseph R. Freitas
    • 1
  • Nicholas H. de Klerk
    • 2
  • Ursula R. Kees
    • 1
  1. 1.Division of Children’s Leukaemia and Cancer Research, Telethon Institute for Child Health Research and Centre for Child Health ResearchThe University of AustraliaPerthAustralia
  2. 2.Division of Biostatistics and Genetic Epidemiology, Telethon Institute for Child Health Research and Centre for Child Health ResearchThe University of Western AustraliaPerthAustralia

Personalised recommendations