Molecular Biotechnology

, Volume 27, Issue 3, pp 179–186 | Cite as

RACE using only a gene-specific primer

Application of a template-switching model
  • Masanori Hirano


This article describes a simple method for accurate rapid amplification of complementary deoxyribonucleic acid (cDNA) ends (RACE), the distinctive feature being that only a gene-specific primer is used, without an anchor or adapter primer. Under these conditions, Thermus aquaticus (Taq) polymerase synthesizes cDNA ends exactly, so that amplified products obtain a characteristic structure: a terminal inverted repeat composed of a gene-specific primer and occasionally several nucleotides from its 3′ flanking sequence. These structures suggest a hypothetical mechanism of cDNA end synthesis in which Taq DNA polymerase synthesizes a sequence complementary to the gene-specific primer at the 3′ end of the daughter strand by switching the template to the 5′ terminal region through circularization of the DNA. As a result, the targeted cDNA will be efficiently amplified with only a single gene-specific primer. This technique, which provides highly specific amplification of the 5′ and 3′ ends of a cDNA, is especially useful for isolation of cDNA when the corresponding messenger ribonucleic acid is scarce.

Index Entries

RACE single gene-specific primer terminal inverted repeat template-switching model of Taq DNA polymerase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  2. 2.
    Frohman, M. A., Dush, M. K., and Martin, G. R. (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85, 8998–9002.PubMedCrossRefGoogle Scholar
  3. 3.
    Chenchik, A., Diachenko, L., Moqadam, F., Tarabykin, V., Lukyanov, S., and Siebert, P. D. (1996) Full-length cDNA cloning and determination of mRNA 5′ and 3′ ends by amplification of adapter-ligated cDNA. Biotechniques 21, 526–534.PubMedGoogle Scholar
  4. 4.
    Gubler, U. and Hoffman, B. J. (1983) A simple and very efficient method for generating complimentary DNA libraries. Gene 25, 263–269.PubMedCrossRefGoogle Scholar
  5. 5.
    D’Aquila, R. T., Bechtel, L. J., Videler, J. A., Eron, J. J., Gocczyca, P., and Kaplan, J. C. (1991) Maximizing sensitivity and specificity of PCR by pre-amplification heating. Nucleic Acids Res. 19, 3749.PubMedCrossRefGoogle Scholar
  6. 6.
    Chou, Q., Russel, M., Birch, D. E., Raymond, J., and Bloch, W. (1992) Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res. 20, 1717–1723.PubMedCrossRefGoogle Scholar
  7. 7.
    Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K., and Mattick, J. S. (1991) Touchdown PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19, 4008.PubMedCrossRefGoogle Scholar
  8. 8.
    Hecker, K. H. and Roux, K. H. (1996) High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. Biotechniques 20, 478–485.PubMedGoogle Scholar
  9. 9.
    Kneitz, B., Cohen, P. E., Avdievich, E., et al. (2000) MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev. 14, 1085–1097.PubMedGoogle Scholar
  10. 10.
    Paquis-Flucklinger, V., Santucci-Darmanin, S., Paul, R., Saunieres, A., Turc-Carel, C., and Desnuelle, C. (1997) Cloning and expression analysis of a meiosis-specific MutS homolog: the human MSH4 gene. Genomics 44, 188–194.PubMedCrossRefGoogle Scholar
  11. 11.
    Heffron, F., So, M., and McCarthy, R. J. (1978) In vitro mutagenesis of a circular DNA molecule by using synthetic restriction sites. Proc. Natl. Acad. Sci. USA 75, 6012–6016.PubMedCrossRefGoogle Scholar
  12. 12.
    Mueller-Hill, K. and Loeb, D. D. (2002) Cis-acting sequences 5E, M, and 3E interact to contribute to primer translocation and circularization during reverse transcription of avian hepadnavirus DNA. J. Virol. 76, 4260–4266.PubMedCrossRefGoogle Scholar
  13. 13.
    Liu, N., Tian, R., and Loeb, D. D. (2003) Base pairing among three cis-acting sequences contributes to template switching during hepadnavirus reverse transcription. Proc. Natl. Acad. Sci. USA 100, 1984–1989.PubMedCrossRefGoogle Scholar
  14. 14.
    Rychlik, W. (1995) Selection of primers for polymerase chain reaction. Mol. Biotechnol. 3, 129–134.PubMedGoogle Scholar
  15. 15.
    Brownie, J., Shawcross, S., Theaker, J., et al. (1997) The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res. 25, 3235–3241.PubMedCrossRefGoogle Scholar
  16. 16.
    Panganiban, A. T. and Temin, H. M. (1983) The terminal nucleotides of retrovirus DNA are required for integration but not virus production. Nature 306, 155–160.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang, K. and Pearson, G. D. (1985) Adenovirus sequences required for replication in vivo. Nucleic Acids Res. 13, 5173–5187.PubMedCrossRefGoogle Scholar
  18. 18.
    Olasz, F., Farkas, T., Kiss, J., Arini, A., and Arber, W. (1997) Terminal inverted repeats of insertion sequence IS30 serve as targets for transposition. J. Bacteriol. 179, 7551–7558.PubMedGoogle Scholar
  19. 19.
    Calvi, B. R., Hong, T. J., Findley, S. D., and Gelbart, W. M. (1991) Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66, 465–471.PubMedCrossRefGoogle Scholar
  20. 20.
    Morgan, G. T. (1995) Identification in the human genome of mobile elements spread by DNA-mediated transposition. J. Mol. Biol. 254, 1–5.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  1. 1.HuBit GenomixTokyoJapan

Personalised recommendations