Molecular Biotechnology

, Volume 27, Issue 2, pp 109–118 | Cite as

The injection of plasmid DNA in mouse muscle results in lifelong persistence of DNA, gene expression, and humoral response



The duration of the immune response against any vaccine is critical. The present study was performed to determine the stability of injected plasmid deoxyribonucleic acid (DNA), the duration of gene expression in mouse muscle, as well as the duration of the immune response generated in mice after injection of plasmid pSO2C1 harboring the cry11Bb gene of Bacillus thuringiensis serovar. medellin. The localization and the persistence of the inoculated gene were determined by in situ hybridization and polymerase chain reaction (PCR). The results demonstrated that plasmid DNA can persist in mouse muscle for up to 2 yr. Moreover, immunohistochemical analysis showed that Cry11Bb protein was expressed for the lifetime of the mice at a low but significant level. Finally, production of Cry11Bb-specific antibodies in mice injected with pSO2C1 was high and durable as significant antibody titers were observed up to 119 wk after injection of the plasmid. This persistent immune response is likely owing to the existence of a protein and/or DNA depot in the organism, which serves to maintain the immune response, acting as a secondary or booster immunization.

Index Entries

DNA vaccines duration immunity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolff, J. A., Malone, R. W., Williams, P., et al. (1990) Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468.PubMedCrossRefGoogle Scholar
  2. 2.
    Ulmer, J. B., Donnelly, J. J., Parker, S. E., et al. (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745–1749.PubMedCrossRefGoogle Scholar
  3. 3.
    Nichols, W. W., Ledwith, B. J., Manam, S. V., and Troilo, P. J. (1995) Potential DNA vaccine integration into host cell genome. Ann. NY Acad. Sci. 772, 30–39.PubMedCrossRefGoogle Scholar
  4. 4.
    Ledwith, B. J., Manam, S., Troilo, P. J., et al. (2000) Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology 43, 258–272.PubMedCrossRefGoogle Scholar
  5. 5.
    Ward, G., Rieder, E., and Mason, P. W. (1997) Plasmid DNA encoding replicating foot-and-mouth disease virus genomes induces antiviral immune responses in swine. J. Virol. 71, 7442–7447.PubMedGoogle Scholar
  6. 6.
    Chen, Y., Usherwood, E. J., Surman, S. L., Hogg, T. L., and Woodland, D. L. (1999) Long-term CD8+ T cell memory to Sendai virus elicited by DNA vaccination. J. Gen. Virol. 80(Pt 6), 1393–1399.PubMedGoogle Scholar
  7. 7.
    Chang, G. J., Hunt, A. R., and Davis, B. (2000) A single intramuscular injection of recombinant plasmid DNA induces protective immunity and prevents Japanese encephalitis in mice. J. Virol 74, 4244–4252.PubMedCrossRefGoogle Scholar
  8. 8.
    Rocha-Zavaleta, L., Alejandre, J. E., and Garcia-Carranca, A. (2002) Parenteral and oral immunization with a plasmid DNA expressing the human papillomavirus 16-L1 gene induces systemic and mucosal antibodies and cytotoxic T lymphocyte responses. J. Med. Virol. 66, 86–95.PubMedCrossRefGoogle Scholar
  9. 9.
    Tighe, H., Corr, M., Roman, M., and Raz, E. (1998) Gene vaccination: plasmid DNA is more than just a blueprint. Immunol. Today 19, 89–97.PubMedCrossRefGoogle Scholar
  10. 10.
    Davis, H. L., Michel, M. L., and Whalen, R. G. (1995) Use of plasmid DNA for direct gene transfer and immunization. Ann. NY Acad. Sci. 772, 21–29.PubMedCrossRefGoogle Scholar
  11. 11.
    Vazquez-Padron, R. I., Moreno-Fierros, L., Neri-Bazan, L., Martinez-Gil, A. F., de-la-Riva, G. A., and Lopez-Revilla, R. (2000) Characterization of the mucosal and systemic immune response induced by Cry1Ac protein from Bacillus thuringiensis HD 73 in mice. Braz. J. Med. Biol. Res. 33, 147–155.PubMedCrossRefGoogle Scholar
  12. 12.
    Vazquez-Padron, R. I., Moreno-Fierros, L., Neri-Bazan, L., de la Riva, G. A., and Lopez-Revilla, R. (1999) Intragastric and intraperitoneal administration of Cry1Ac protoxin from Bacillus thuringiensis induces systemic and mucosal antibody responses in mice. Life Sci. 64, 1897–1912.PubMedCrossRefGoogle Scholar
  13. 13.
    Orduz, S., Realpe, M., Arango, R., Murillo, L. A., and Delecluse, A. (1998) Sequence of the cry11Bb11 gene from Bacillus thuringiensis subsp. medellin and toxicity analysis of its encoded protein. Biochim. Biophys. Acta 1388, 267–272.PubMedGoogle Scholar
  14. 14.
    Barale, J. C., Candelle, D., Attal-Bonnefoy, G., et al. (1997) Plasmodium falciparum AARP1, a giant protein containing repeated motifs rich in asparagine and aspartate residues, is associated with the infected erythrocyte membrane. Infect. Immun. 65, 3003–3010.PubMedGoogle Scholar
  15. 15.
    Orduz, S., Diaz, T., Restrepo, N., Patino, M. M., and Tamayo, M. C. (1996) Biochemical, immunological and toxicological characteristics of the crystal proteins of Bacillus thuringiensis subsp. medellin. Mem. Inst. Oswaldo Cruz 91, 231–237.PubMedCrossRefGoogle Scholar
  16. 16.
    Bravo, A., Sarabia, S., Lopez, L., et al. (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl. Environ. Microbiol. 64, 4965–4972.PubMedGoogle Scholar
  17. 17.
    Mor, G. and Eliza, M. (2001) Plasmid DNA vaccines: immunology, tolerance, and autoimmunity. Mol. Biotechnol. 19, 245–250.PubMedCrossRefGoogle Scholar
  18. 18.
    Smith, H. A. (1994) Regulatory considerations for nucleic acid vaccines. Vaccine 12, 1515–1519.PubMedCrossRefGoogle Scholar
  19. 19.
    Smith, H. A. and Klinman, D. M. (2001) The regulation of DNA vaccines. Curr. Opin. Biotechnol. 12, 299–303.PubMedCrossRefGoogle Scholar
  20. 20.
    Dupuis, M., Denis-Mize, K., Woo, C., et al. (2000) Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J. Immunol. 165, 2850–2858.PubMedGoogle Scholar
  21. 21.
    Wolff, J. A., Dowty, M. E., Jiao, S., et al. (1992) Expression of naked plasmids by cultured myotubes and entry of plasmids into T tubules and caveolae of mammalian skeletal muscle. J. Cell Sci. 103(Pt 4), 1249–1259.PubMedGoogle Scholar
  22. 22.
    Wolff, J. A., Ludtke, J. J., Acsadi, G., Williams, P., and Jani, A. (1992) Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum. Mol. Genet. 1, 363–369.PubMedCrossRefGoogle Scholar
  23. 23.
    Geissler, E. K., Wang, J., Fechner, J. H., Jr., Burlingham, W. J., and Knechtle, S. J. (1994) Immunity to MHC class I antigen after direct DNA transfer into skeletal muscle. J. Immunol. 152, 413–421.PubMedGoogle Scholar
  24. 24.
    Montgomery, D. L., Donnelly, J. J., Shiver, J. W., Liu, M. A., and Ulmer, J. B. (1994) Protein expression in vivo by injection of polynucleotides. Curr. Opin. Biotechnol. 5, 505–510.PubMedCrossRefGoogle Scholar
  25. 25.
    Chattergoon, M. A., Robinson, T. M., Boyer, J. D., and Weiner, D. B. (1998) Specific immune induction following DNA-based immunization through in vivo transfection and activation of macrophages/antigen-presenting cells. J. Immunol. 160, 5707–5718.PubMedGoogle Scholar
  26. 26.
    Hartikka, J., Sawdey, M., Cornefert-Jensen, F., et al. (1996) An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum. Gene Ther. 7, 1205–1217.PubMedCrossRefGoogle Scholar
  27. 27.
    Ho, T. Y., Hsiang, C. Y., Hsiang, C. H., and Chang, T. J. (1998) DNA vaccination induces a long-term antibody response and protective immunity against pseudorabies virus in mice. Arch. Virol 143, 115–125.PubMedCrossRefGoogle Scholar
  28. 28.
    Davis, H. L., Mancini, M., Michel, M. L., and Whalen, R. G. (1996) DNA-mediated immunization to hepatitis B surface antigen: longevity of primary response and effect of boost. Vaccine 14, 910–915.PubMedCrossRefGoogle Scholar
  29. 29.
    Whalen, R. G., Leclerc, C., Deriaud, E., Schirmbeck, R., Reimann, J., and Davis, H. L. (1995) DNA-mediated immunization to the hepatitis B surface antigen: activation and entrainment of the immune response. Ann. NY Acad. Sci. 727, 64–76.CrossRefGoogle Scholar
  30. 30.
    Hassett, D. E., Zhang, J., Slifka, M., and Whitton, J. L. (2000) Immune responses following neonatal DNA vaccination are long-lived, abundant, and qualitatively similar to those induced by conventional immunization. J. Virol. 74, 2620–2627.PubMedCrossRefGoogle Scholar
  31. 31.
    Davis, H. L., Millan, C. L., and Watkins, S. C. (1997) Immune-mediated destruction of transfected muscle fibers after direct gene transfer with antigen-expressing plasmid DNA. Gene Ther. 4, 181–188.PubMedCrossRefGoogle Scholar
  32. 32.
    Payette, P. J., Weeratna, R. D., McCluskie, M. J., and Davis, H. L. (2001) Immune-mediated destruction of transfected myocytes following DNA vaccination occurs via multiple mechanisms. Gene Ther. 8, 1395–1400.PubMedCrossRefGoogle Scholar
  33. 33.
    Mor, G., Singla, M., Steinberg, A. D., Hoffman, S. L., Okuda, K., and Klinman, D. B. (1997) Do DNA vaccines induce autoimmune disease? Hum. Gene Ther. 8, 293–300.PubMedGoogle Scholar
  34. 34.
    Pang, A. S. (1994) Production of antibodies against Bacillus thuringiensis detla-endotoxin by injecting its plasmids. Biochem. Biophys. Res. Commun. 202, 1227–1234.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Gemma Armengol
    • 1
  • Lina Maria Ruiz
    • 1
  • Sergio Orduz
    • 1
    • 2
  1. 1.Biotechnology and Biological COntrol UnitCorporaciń para Investigaciones BiológicasMedellń, Colombia
  2. 2.Universidad de PamplonaPamplona (NS), Colombia

Personalised recommendations