Molecular Biotechnology

, Volume 26, Issue 3, pp 215–219 | Cite as

Transgene methylation in mice reflects copy number but not expression level

  • Ramona N. Pena
  • John Webster
  • Stephen Kwan
  • Jan Korbel
  • Bruce A. Whitelaw


In mammals, CpG methylation is one of the mechanisms of epigenetic control over the linear sequence of bases of deoxyribonucleic acid (DNA); about 70% of CpG dinucleotides are methylated. The actual signal that triggers DNA methylation is not known, although repetitive DNA has been shown to be an attractive template for DNA methylases. To address methylation events associated with transgenic copy number, we have analyzed transgenes that are actively transcribed in a tissue-specific manner. We have compared gross transgene methylation by restriction-enzyme digestion in expressing and nonexpressing tissues. The observed pattern suggests that the DNA methylation machinery can recognize repeated genomic sequences independently of their transcriptional activity.

Index Entries

Mammary methylation mice repetitive DNA silencing transcription transgene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garrick D., Fiering, S., Martin, D. I., and Whitelaw, E. (1998) Repeat-induced gene silencing in mammals. Nat. Genet. 18, 56–59.PubMedCrossRefGoogle Scholar
  2. 2.
    Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Walsh, C. P. and Bestor, T. H. (1999) Cytosine methylation and mammalian development. Genes Dev. 13, 26–34.PubMedGoogle Scholar
  4. 4.
    Whitelaw, E. and Martin, D. I. (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet. 27, 361–365.PubMedCrossRefGoogle Scholar
  5. 5.
    Ramirez, A., Milot, E., Ponsa, I., et al. (2001) Sequence and chromosomal context effects on variegated expression of keratin 5/lacZ constructs in stratified epithelia of transgenic mice. Genetics 158, 341–350.PubMedGoogle Scholar
  6. 6.
    Whitelaw, C. B. A., Harris, S., McClenaghan, M., Simons, J. P., and Clark, A. J. (1992) Position-independent expression of the ovine beta-lactoglobulin gene in transgenic mice, Biochem. J. 286, 31–39.PubMedGoogle Scholar
  7. 7.
    Burdon, T. G., Maitland, K. A., Clark A. J., Wallace, R., and Watson, C. J. (1994) Regulation of the sheep beta-lactoglobulin gene by lactogenic hormones is mediated by a transcription factor that binds an interferon-gamma activation site-related element. Mol. Endocrinol. 8, 1528–1536.PubMedCrossRefGoogle Scholar
  8. 8.
    Whitelaw, C. B. A., Grolli, S., Accornero, P., Donofrio, G., Farini, E., and Webster, J. (2000) Matrix attachment region regulates basal beta-lactoglobulin transgene expression. Gene 244, 73–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Dorer, D. R. and Henikoff, S. (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1002.PubMedCrossRefGoogle Scholar
  10. 10.
    Dobie, K. W., Lee, M., Fantes, J. A., Graham, E., Clark, A. J., and McClenaghan, M. (1996) Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc. Natl. Acad. Sci. USA 93, 6659–6664.PubMedCrossRefGoogle Scholar
  11. 11.
    Michelotti, E. F., Sanford, S., and Levins, D. (1997) Marking of active genes on mitotic chromosomes. Nature 388, 895–899.PubMedCrossRefGoogle Scholar
  12. 12.
    Jenuwein, T., Forrester, W. C., Fernandez-Herrero, L. A., Laible, G., Dull, M., and Grosschedl, R. (1997) Extension of chromatin accessibility by nuclear matrix attachment regions. Nature 385, 269–272.PubMedCrossRefGoogle Scholar
  13. 13.
    Chevalier-Mariette, C., Henry, I., Mountford, L., et al. (2003) CpG content affects gene silencing in mice: evidence from novel transgenes. Genome Biol. 4, R52 (epub).Google Scholar
  14. 14.
    Sutherland, H. G., Kearns, M., Morgan, H. D., et al. (2000) Reactivation of heritably silenced gene expression in mice. Mamm. Genome 11, 347–355.PubMedCrossRefGoogle Scholar
  15. 15.
    Robertson, G., Garrick, D., Wilson, M., Martin, D. I., and Whitelaw, E. (1996) Age-dependent silencing of globin transgenes in the mouse. Nucl. Acids Res. 24, 1465–1471.PubMedCrossRefGoogle Scholar
  16. 16.
    Opsahl, M. L., McClenaghan, M., Springbett, A., et al. (2002) Multiple effects of genetic background on variegated transgene expression in mice. Genetics 160, 1107–1112.PubMedGoogle Scholar
  17. 17.
    Valenza-Schaerly, P., Pickard, B., Walter, J., et al. (2001) A dominant modifier of transgene methylation is mapped by QTL analysis to mouse chromosome 13. Genome Res. 11, 382–388.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Ramona N. Pena
    • 1
  • John Webster
    • 1
  • Stephen Kwan
    • 1
  • Jan Korbel
    • 1
  • Bruce A. Whitelaw
    • 1
  1. 1.Gene Expression and DevelopmentRoslin InstituteRoslinScotland, UK

Personalised recommendations