Molecular Biotechnology

, Volume 26, Issue 1, pp 7–16 | Cite as

Variations in transfection efficiency of VEGF165 and VEGF121-cDNA

Its effects on proliferation and migration of human endothelial cells
  • Srdjan Djurovic
  • Heidi Kristansen
  • Marit Sletten
  • Kathrine Halvorsen
  • Kåre Berg


Little is known about the expression pattern of vascular endothelial growth factor (VEGF) among smooth muscle cells of different arterial regions. Therefore, we have conducted studies aimed at increasing expression of VEGF in cultured human smooth muscle cells (SMCs) from different sites: aorta, umbilical artery, and coronary artery. Two plasmids harboring human VEGF121 and VEGF165 isoforms, respectively, were constructed and lipotransfected into vascular SMCs, using the Fu-GENE 6. Extensive optimization of transfection conditions were performed prior to this.

Different basal levels of VEGF were observed between cell types: from 0.51–0.95 pg/mL/µg protein in umbilical artery, through 2.32–2.39 pg/mL/µg protein in coronary artery, to 5.45–7.52 pg/mL/µg protein in aortic SMCs. Significant differences in responses to transfection were also observed: The increase in VEGF production was most pronounced in umbilical artery SMCs (e.g., with 4 µg VEGF121-cDNA/in the wells)—an approximate 600-fold as opposed to an 18-fold increase in aortic SMCs and a 29-fold increase in coronary artery SMCs.

In addition, we observed significant increases in proliferation rate of aortic and coronary endothelial cells (ECs), after incubation with conditioned medium from VEGF-transfected SMCs. Observed changes differed in relation to cell origin and isoform.

Index Entries

VEGF transfection efficiency smooth muscle cells Fu-GENE 6 proliferation migration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., and Dvorak, H. F. (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985.PubMedCrossRefGoogle Scholar
  2. 2.
    Dvorak, H. F., Brown, L. F., Detmar, M., and Dvorak, A. M. (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability and angiogenesis. Am. J. Pathol. 146, 1029–1039.PubMedGoogle Scholar
  3. 3.
    Tuder, R. M., Flook, B. E., and Voelkel, N. F. (1995) Increased gene expression for VEGF and the VEGF receptors KDR/flk and flt in lungs exposed to acute or chronic hypoxia. J. Clin. Invest. 95, 1798–1807.PubMedGoogle Scholar
  4. 4.
    Cross, M. J. and Claesson-Welsh L. (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 22, 201–207.PubMedCrossRefGoogle Scholar
  5. 5.
    Olofsson, B., Pajusola, K., Kaipainen, A., et al. (1996) Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc. Natl. Acad. Sci. USA 93, 2576–2581.PubMedCrossRefGoogle Scholar
  6. 6.
    Joukov, V., Pajusola, K., Kaipainen, A., et al. (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-w) receptor tyrosine kinases. EMBO J. 15, 290–298.PubMedGoogle Scholar
  7. 7.
    Lee, J., Gray, A., Yuan, J., Luoh, S. M., Avraham, H., and Wood, W. I. (1996) Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc. Natl. Acad. Sci. USA 93, 1988–1992.PubMedCrossRefGoogle Scholar
  8. 8.
    Ferrara, N. and Davis-Smyth T. (1997) The biology of vascular endothelial growth factor. Endocrine Reviews 18, 1–22.CrossRefGoogle Scholar
  9. 9.
    Shibuya, M., Ito, N., and Claesson-Welsh, L. (1999) Structure and function of vascular endothelial growth factor receptor-1 and -2. Curr. Top. Microbiol. Immunol. 237, 59–83.PubMedGoogle Scholar
  10. 10.
    Taipale, J., Makinen, T., Arighi, E., Kukk, E., Karkkainen, M., and Alitalo, K. (1999) Vascular endothelial growth factor receptor-3. Curr. Top. Microbiol. Immunol. 237, 85–96.PubMedGoogle Scholar
  11. 11.
    Gitay-Goren, H., Cohen, T., Tessler, S., et al. (1996) Selective binding of VEGF sub 121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J. Biol. Chem. 271, 5519–5523.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu, B., Earl, H. M., Baban, D., Shoaibi, M., Fabra, A., Kerr, D. J., et al. (1995) Melanoma cell lines express VEGF receptor KDR and respond to exogenously added VEGF. Biochem. Biophys. Res. Commun. 217, 721–727.PubMedCrossRefGoogle Scholar
  13. 13.
    Soker, S., Takashima, S., Miao, H. Q., Neufels, G., and Klagsburn, M. (1998) Neutrophilin-1 is expressed by endothelial and tumour cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745.PubMedCrossRefGoogle Scholar
  14. 14.
    Thierry, A. R., Rabinovich, P., Peng, B., Mahan, L. C., Bryant, J. L., and Gallo, R. C. (1997) Characterization of liposome-mediated gene delivery: expression, stability and pharmacokinetics of plasmid DNA. Gene Ther. 4, 226–237.PubMedCrossRefGoogle Scholar
  15. 15.
    Gill, D. R., Southern, K. W., Mofford, K. A., et al. (1997) A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 4, 199–209.PubMedCrossRefGoogle Scholar
  16. 16.
    Young, A. T., Lakey, J. R., Murray, A. G., and Moore, R. B. (2002) Gene therapy: a lipofection approach for gene transfer into primary endothelial cells. Cell Transplant. 11, 573–582.PubMedGoogle Scholar
  17. 17.
    Dass, C. R. (2002) Cytotoxicity issues pertinent to lipoplex-mediated gene therapy in-vivo. J. Pharm. Pharmacol. 54, 593–601.PubMedCrossRefGoogle Scholar
  18. 18.
    Neuhuber, B., Huang, D. I., Daniels, M. P., and Torgan, C. E. (2002) High efficiency transfection of primary skeletal muscle cells with lipid-based reagents. Muscle Nerve 26, 136–140.PubMedCrossRefGoogle Scholar
  19. 19.
    Lai, K. M. and Pawson, T. (2000) The ShcA phosphotyrosine docking protein sensitizes cardiovascular signaling in the mouse embryo. Genes Dev. 14, 1132–1145.PubMedGoogle Scholar
  20. 20.
    Henkemeyer, M., Rossi, D. J., Holmyard, D. P., et al. (1995) Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature 377, 695–701.PubMedCrossRefGoogle Scholar
  21. 21.
    Wojnowski, L., Zimmer, A. M., Beck, T. W., et al. (1997) Endothelial apoptosis in Braf-deficient mice. Nat. Genet. 16, 293–297.PubMedCrossRefGoogle Scholar
  22. 22.
    Yang, J., Boerm, M., McCarty, M., et al. (2000) Mekk3 is essential for early embryonic cardiovascular development. Nat. Genet. 24, 309–313.PubMedCrossRefGoogle Scholar
  23. 23.
    Battegay, E. J. (1995) Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J. Mol. Med. 73, 333–346.PubMedCrossRefGoogle Scholar
  24. 24.
    Dulak, J., Jozkowicz, A., Ratajska, A., Szuba, A., Cooke, J. P., and Dembinska-Kiec, A. (2000) Vascular endothelial growth factor is efficiently synthesized in spite of low transfection efficiency of pSG5VEGF plasmids in vascular smooth muscle cells. Vasc. Med. 5, 33–40.PubMedGoogle Scholar
  25. 25.
    Isner, J. M. and Asahara, T. (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J. Clin. Invest. 103, 1231–1236.PubMedCrossRefGoogle Scholar
  26. 26.
    Tomanek, R. J. and Schatteman, G. C. (2000) Angiogenesis: new insights and therapeutic potential. Anat. Rec. 261, 126–135.PubMedCrossRefGoogle Scholar
  27. 27.
    Vale, P. R., Losordo, D. W., Milliken, C. E., et al. (2000) Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 102, 965–974.PubMedGoogle Scholar
  28. 28.
    Bryans, M., Kass, S., Seivwright, C., and Adams, R. L. (1992) Vector methylation inhibits transcription from the SV40 early promoter. FEBS Lett. 309, 97–102.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Srdjan Djurovic
    • 1
    • 2
  • Heidi Kristansen
    • 1
    • 2
  • Marit Sletten
    • 1
    • 2
  • Kathrine Halvorsen
    • 1
    • 2
  • Kåre Berg
    • 1
    • 2
  1. 1.Department of Medical GeneticsUllevaal University HospitalOsloNorway
  2. 2.Institute of Medical GeneticsUniversity of OsloNorway

Personalised recommendations