Molecular Biotechnology

, Volume 25, Issue 1, pp 95–99 | Cite as

Preparation of peptide-loaded dendritic cells for cancer immunotherapy

  • Michael A. Morse
  • Tim Clay
  • Kirsten Colling
  • H. Kim Lyerly


Dendritic cell-based vaccines are being evaluated in clinical trials to determine their ability to activate clinically relevant tumor antigen-specific immune responses. Although some groups isolate dendritic cells from peripheral blood, most have found it more efficient to generate large numbers from peripheral blood progenitors, particularly plastic adherent or CD14+ monocytes, in media supplemented with GM-CSF and IL-4. These DC may then be matured, if desired, and loaded with antigen, such as tumor-associated peptides, prior to administration. We describe the scheme that we are currently using to generate peptide-loaded dendritic cells for our clinical trials of cancer immunotherapy.

Index Entries

Dendritic cells cancer immunotherapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murphy, G., Tjoa, B., Ragde, H, et al. (1996) Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen. The Prostate 29, 371–380.PubMedCrossRefGoogle Scholar
  2. 2.
    Nestle, F. O., Alijagic, S., Gilliet, M., et al. (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med. 4, 328–332.PubMedCrossRefGoogle Scholar
  3. 3.
    Morse MA, Deng Y, Hull S, Coleman D, et al. (1999) A phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin. Cancer Res. 5, 1331–1338.PubMedGoogle Scholar
  4. 4.
    Suss, G. and Shortman, K. (1996) A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-in-duced apoptosis. J. Exp. Med. 183, 1789–1796.PubMedCrossRefGoogle Scholar
  5. 5.
    Szabolcs, P., Moore, M.A.S. and Young, J.W. (1995) Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34+ bone marrow precursors cultured with c-kit ligand, granulocyte-macrophage colony-stimulating factor, and TNF-γ. J. Immunol. 154, 5851–5861.PubMedGoogle Scholar
  6. 6.
    Romani, N., Reider, D., Heuer, M., et al. (1996) Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J. Immunol. Methods 196, 137–151.PubMedCrossRefGoogle Scholar
  7. 7.
    Romani, N., Gruner, S., Brang, D., et al. (1994) Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180, 83–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Bender, A., Sapp, M., Schuler, G., et al. (1996) Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J. Immunol. Methods 196, 121–35.PubMedCrossRefGoogle Scholar
  9. 9.
    Morse, M.A., Zhou, L.-J., Tedder, T.F., et al. (1997) Generation of dendritic cells in vitro from peripheral blood mononuclear cells with GM-CSF, IL-4, and TNF-α for use in cancer immunotherapy. Ann. Surg. 226, 6–16.PubMedCrossRefGoogle Scholar
  10. 10.
    Markowicz, S. and Engleman, E.C. (1990) Granulocyte-macrophage colony-stimulating factor promotes differentiation and survival of human peripheral blood dendritic cells in vitro. J. Clin. Invest. 85, 955–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Ruppert, J., Friedrichs, D., Xu, H., Peters, J.H. (1991) IL-4 decreases the expression of the monocyte differentiation marker CD14, paralleled by an increasing accessory potency. Immunobiol. 182, 449–464.Google Scholar
  12. 12.
    Wong, C., Morse, M., and Nair, S.K. (1998) Induction of primary, human antigen-specific cytotoxic T lymphocytes in vitro using dendritic cells pulsed with peptides. J. Immunother. 21, 32–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Alters, S.E., Gadea, J.R., Sorich, M., et al. (1998) Dendritic cells pulsed with CEA peptide induce CEA specific CTL with restricted TCR repertoire. J. Immunother. 21, 17–26.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Michael A. Morse
    • 1
  • Tim Clay
    • 2
  • Kirsten Colling
    • 2
  • H. Kim Lyerly
    • 2
  1. 1.Department of MedicineDuke University Medical centerDurham
  2. 2.Department of SurgeryDuke University Medical CenterDurham

Personalised recommendations