Advertisement

Molecular Biotechnology

, Volume 24, Issue 3, pp 257–281 | Cite as

A new look at xylanases

An overview of purification strategies
  • Paula Sá-Pereira
  • Helena Paveia
  • Maria Costa-Ferreira
  • Maria Raquel Aires-Barros
Review

Abstract

Interest in xylanases from different sources has increased markedly in the past decade, in part because of the application of these enzymes in the pulp and paper industry. Purity and purification costs are becoming important issues in modern biotechnology as the industry matures and competitive products reach the marketplace. Thus, new paths for successful and efficient xylanase recovery have to be followed.

This article reviews the isolation and purification methods used for the recovery of microbial xylanases. Origins and applications of xylanases are described, highlighting the special features of this class of enzymes, such as the carbohydrate-binding domains (CBDs) and their importance in the development of affinity methodologies to increase and facilitate xylanase purification. Implications of recombinant DNA technology for the isolation and purification of xylanases are evaluated. Several purification procedures are analyzed, taking into consideration the sequence of the methods used in each and the number of times each method is used. New directions to improve xylanase separation and purification from fermentation media are described.

Index Entries

Xylanase purification strategies CBD biospecific affinity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thomson, J.A. (1993) Molecular biology of xylan degradation. FEMS Microbiol. Lett. 104, 65–82.CrossRefGoogle Scholar
  2. 2.
    Bhat, M.K. (2000) Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18, 355–383.PubMedCrossRefGoogle Scholar
  3. 3.
    Subramaniyan, S., and Prema, P. (2000) Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183, 1–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Shimada, K., Karita, S., Sakka, K., and Ohmiya, K. (1994) Cellulases, xylanases and their genes from bacteria. In: Recombinant microbes from industrial and agricultural application. (Murooka, Y. and T. Imanaka, eds.). Marcel Dekke, New York. pp. 395–429.Google Scholar
  5. 5.
    Jeffries, T.W. (1996) Biochemistry and genetics of microbial xylanases. Curr. Opin. Biotechnol. 7, 337–342.PubMedCrossRefGoogle Scholar
  6. 6.
    Uffen, R.L. (1997) Xylan degradation, a glimpse at microbial diversity. J. Ind. Microb. Biotechnol. 19, 1–6.CrossRefGoogle Scholar
  7. 7.
    Karita, S., Sakka, K., Ohmiya, K., and Kimura, T. (1997) Structure of cellulases and their applications. Biotechnol. Genet. Engineer. Rev. 14 (13), 365–414.Google Scholar
  8. 8.
    Viikari, L., Kantelinen, A., Sundquist, J., and Linko, M. (1994) Xylanases in bleaching. From an idea to the industry. FEMS Microbiol. Rev. 13, 335–350.CrossRefGoogle Scholar
  9. 9.
    Kirk, T.K. and Jeffries, T.W. (1996) Roles for microbial enzymes in pulp and paper processing. In: Enzymes for Pulp and Paper Processing. American Chemical Society, Washindton, DC, pp. 2–14.Google Scholar
  10. 10.
    Gilbert, H.J. and Hazlewood, J.P. (1993) Bacterial cellulases and xylanases. J. Gen. Microbiol. 139, 187–194.Google Scholar
  11. 11.
    Coughlan, M.P. and Hazlewood, G.P. (1993) β-1,4-d-xylan degrading enzyme systems, biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17, 259–289.PubMedGoogle Scholar
  12. 12.
    Jeong, K.J., Park, I.Y., Kim, M.S., and Kim, S.C. (1998) High-level expression of an endoxylanase gene from Bacillus sp. in Bacillus subtilis DB104 for the production of xylobiose from xylan. Appl. Microbiol. Biotechnol. 50, 113–118.PubMedCrossRefGoogle Scholar
  13. 13.
    Lopéz-Fernández, C.L., Rodríguez, J., Ball, A.S., Patiño, J.L.C., Leblic, M.I.P., and Arias, M.E. (1998) Application of the affinity binding of xylanases to oat spelt xylan in the purification of endoxylanase CM 2 from Streptomyces chattanoogensis CECT 3336 Appl. Microbiol. Biotechnol. 50, 284–287.Google Scholar
  14. 14.
    Sun, J.L., Kimura, T., Karita, S., Sakka, K., and Ohmiya, K. (1998) Adsorption of Clostridium stercorarium xylanase and the importance of the CDBs to xylan hydrolysis. J. Ferment. Bioeng. 85(1), 63–68.CrossRefGoogle Scholar
  15. 15.
    Ratanakhanokchai, K., Kyu, K.L., and Tanticharoen, M. (1999) Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65(2), 694–697.PubMedGoogle Scholar
  16. 16.
    Henrissat, B. and Bairoch, A. (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293(Pt 3), 781–788.PubMedGoogle Scholar
  17. 17.
    Henrissat, B. and Bairoch, A. (1996) Updating the sequence based classification of glycosyl hydrolases. Biochem. J. 316, 695–696.PubMedGoogle Scholar
  18. 18.
    Withers, S.G. (2001) Mechanisms of glycosyl transferases and hydrolases. Carbohydr. Polym. 44, 325–337.CrossRefGoogle Scholar
  19. 19.
    Kulkarni, N., Shendye, A., and Rao, M. (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23, 411–456.PubMedCrossRefGoogle Scholar
  20. 20.
    Biely, P., Vrsanská, M., Tenkanen, M., Kluepfel, D. (1997) Endo-β-xylanase families, differences in catalytic properties. J. Biotechnol. 57, 151–166.PubMedCrossRefGoogle Scholar
  21. 21.
    Saraswat, V. and Bisaria, V.S. (2000) Purification and substrate specificities of xylanase isoenzymes from Melanocarpus albomyces IIS 68. Biosci. Biotechnol. Biochem. 64(6), 1173–1180.PubMedCrossRefGoogle Scholar
  22. 22.
    Li, K., Azadi, P., Collins, R., Tolan, J., Kim, J.S., and Eriksson, K.E.L. (2000) Relationships between activities of xylanases and xylan structure. Enzyme Microb. Technol. 27, 89–94.CrossRefGoogle Scholar
  23. 23.
    Wong, K.K.Y., Tan, L.U.L., and Saddler, J.N. (1988) Multiplicity of β-1,4-xylanase in microorganisms. Functions and applications. Microbiol. Rev. 52 (3), 305–317.PubMedGoogle Scholar
  24. 24.
    Elegir, G., Szakács, G., and Jeffries, T.W. (1994) Purification, characterization and substrate specificities of multiple xylanases from Streptomyces sp. strain B12-2. Appl. Environ. Microbiol0. 60(7), 2609–2615.Google Scholar
  25. 25.
    Fontes, C.M.G.A., Hazlewood, G.P., Morag, E., Hall, J., Hirst, B.H., and Gilbert, H.J. (1995) Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophylic bacteria. Biochem. J. 307, 151–158.PubMedGoogle Scholar
  26. 26.
    Chen, X., Whitmire, D., and Bowen, J.P. (1996) Xylanase homology modelling using the inverse protein folding approach. Protein Sci. 5, 705–708.PubMedGoogle Scholar
  27. 27.
    Joshi, M.D., Hedberg, A., and Mcintosh, L.P. (1997) Complete measurement of the pKa values of the carboxyl and imidazole groups in Bacillus circulans xylanase. Protein Sci. 6, 2667–2670.PubMedGoogle Scholar
  28. 28.
    See additional information in the Brookhaven Protein Data Bank http://www.rcsb.org/pdb/.Google Scholar
  29. 29.
    Sá-Pereira, P., Costa-Ferreira, M., and Aires-Barros, M.R. (2002) Enzymatic properties of a neutral endo-1,3(4)-β-xylanase Xyl II from Bacillus subtilis. J. Biotechnol. 94, 65–275.CrossRefGoogle Scholar
  30. 30.
    Sá-Pereira, P., Ribeiro, B., Costa-Ferreira, M., and Aires-Barros, M.R. (2002) A new bacterial alkaline endo-1,3(4)-β-xylanase, Xyl I, with laminarase activity from Bacillus subtilis strain CCMI 966. J. Biotechnol. (submitted)Google Scholar
  31. 31.
    Sunna, A., Puls, J., and Antranikian, G. (1996) Purification and characterization of two thermostable endo-β-xylanases from Thermotoga thermarum. Biotechnol. Appl. Biochem. 24, 177–185.Google Scholar
  32. 32.
    Shao, W., DeBlois, S., and Wiegel, J. (1995) A high-molecular-weight, cell-associated xylanase isolated from exponentially growing Thermoanaeobacterium sp. strain JW/SL-YS485. Appl. Environ. Microbiol. 61, 937–940.PubMedGoogle Scholar
  33. 33.
    Wassenberg, D., Schurig, H., Liebl, W., and Jaenicke, R. (1997) Xylanase Xyn A from the bacterium Thermotoga maritima: Structure and stability of the recombinant enzyme and its isolated cellulose-binding domain. Protein Sci. 6, 1718–1726.PubMedGoogle Scholar
  34. 34.
    Marrone, L., McAllister, K.A., and Clarke, A.J. (2000) Characterization of function and activity of domains A, B and C of xylanase C from Fibrobacter succinogenes S85. Protein Eng. 13, 593–601.PubMedCrossRefGoogle Scholar
  35. 35.
    Black, G.W., Rixon, J.E., Clarke, J.H., Hazlewood, G.P., Ferreira, L.M.A., Bolam, D.N., and Gilbert, H.J. (1997) Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates. J. Biotechnol. 57, 59–69.PubMedCrossRefGoogle Scholar
  36. 36.
    Charnoc, S.J., Spurway, T.D., Xie, H., Beylot, M.-H., Virden, R., Warren, R.A.J., Hazlewood, G.P., and Gilbert, H.J. (1998) The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. J. Biol. Chem. 273, 32187–32199.CrossRefGoogle Scholar
  37. 37.
    Rixon, J.E., Clarke, J.H., Hazlewood, G.P., Hoyland, R.W., McCarthy, A.J., and Gilbert, H.J. (1996) Do the non-catalytic polysaccharide-binding domains and linker regions enhance the biobleaching properties of modular xylanases? Appl. Microbiol. Biotechnol. 46, 514–520.PubMedCrossRefGoogle Scholar
  38. 38.
    Fontes, C.M.G.A., Gilbert, H.J., Hazlewood, G.P., et al. (2000) A novel Cellvibrio mixtus family 10 xylanase that is both intracellular and expressed under non-inducing conditions. Microbiol. 146, 1959–1967.Google Scholar
  39. 39.
    Carrard, G., Koivula, A., Söderlund, H., and Béguin, P. (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose Proc. Natl Acad. Sci. USA. 97, 10342–10347.PubMedCrossRefGoogle Scholar
  40. 40.
    Lymar, E.S., Li, B., and Reganathan, V. (1995) Purification and characterization of cellulose-binding β-glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium. Appl. Environ. Microbiol. 61, 2976–2980.PubMedGoogle Scholar
  41. 41.
    Tomme, P., Boraston, A., Kormos, J. M., Warren, R.A.J., and Kilburn, D.G. (2000) Affinity electro-phoresis for the identification and characterization of soluble sugar binding by carbohydrate-binding modules. Enzyme Microb. Technol. 27, 453–458.CrossRefPubMedGoogle Scholar
  42. 42.
    Tomme, P., Warren, R.A., Miller, R.C., Jr., Kilburn, D.G., and Gilkes, N.R. (1995) Cellulose-binding domains: classification and properties In: Enzymatic Degradation of Insoluble Polysaccharides (Saddler, J.N. and Penner, M., eds.), pp. 142–163.Google Scholar
  43. 43.
    See additional information in the URL: http://afmb.cnrs-mrs.fr/~cazy/CAZY/CBD_22.html)Google Scholar
  44. 44.
    Huddleston, J. and Lyddiatt, A. (1990) Aqueous two-phase systems in biochemical recovery. Systematic analysis, design, and implementation of practical processes for the recovery of proteins. Appl. Biochem. Biotechnol. 26, 249–279.Google Scholar
  45. 45.
    Nath, D. and Rao, M. (2001) pH dependent conformational and structural changes of xylanase from an alkalophilic thermophilic Bacillus sp. (NCIM 59). Enzyme Microb. Technol. 28, 397–403.CrossRefPubMedGoogle Scholar
  46. 46.
    Beg, Q.K., Kapoor, M., Mahajan, L., and Hoondal, G.S. (2001) Microbial xylanases and their industrial applications, a review. Appl. Microbiol. Biotechnol. 56, 326–338.PubMedCrossRefGoogle Scholar
  47. 47.
    Colacino, F. and Crichton, R.R. (1997) Enzyme thermostabilization. The state of the art. Biotechnol. Genet. Eng. Rev. 14, 211–277.Google Scholar
  48. 48.
    Kumar, S., Tasi, C.-J., and Nussinov, R. (2000) Factors enhancing protein thermostability. Protein Eng. 13, 179–191.PubMedCrossRefGoogle Scholar
  49. 49.
    Li, Y., Coutinho, P.M., and Ford, C. (1998) Effect on thermostability and catalytic activity of introducing disulfide bonds into Aspergillus awamori glucoamylase. Protein Eng. 11, 661–668.PubMedCrossRefGoogle Scholar
  50. 50.
    Turunen, T., Etuaho, K., Enel, R., Vehmaanperä, J., Wu, X., Rouvinen, J., and Leisola, M. (2001) A combination of weakly stabilizing mutations with a disulfide bridge in the α-region of Trichoderma reesei endo-1,4-β-xylanase II increases the thermal stability through synergism. J. Biotechnol. 88, 37–46.PubMedCrossRefGoogle Scholar
  51. 51.
    Deshpande, V., Hinge, J., and Rao, M. (1990) Chemical modification of xylanases, evidence for essential tryptophan and cysteine residues at the active site. Biochim. Biophys. Acta. 1041, 172–177.PubMedGoogle Scholar
  52. 52.
    Angelo, R., Aguirre, C., Curotto, E., Esposito, E., Fontana, J.D., Baron, M., Milagres, A.M.F., and Duran, N. (1997) Stability and chemical modification of xylanase from Aspergillus sp. (2MI strain). Biotechnol. Appl. Biochem. 25, 19–27.PubMedGoogle Scholar
  53. 53.
    Lenders, J.-P. and Crichton, R.R. (1984) Thermal stabilization of amylolytic enzymes by covalent coupling to soluble polysaccharides. Biotechnol. Bioeng. 26, 1343–1351.CrossRefPubMedGoogle Scholar
  54. 54.
    Singh, S., Pillay, B., and Prior, B.A. (2000) Thermal stability of β-xylanases produced by different Thermomyces lanuginosus strains. Enzyme Microb. Technol. 26, 502–508.CrossRefPubMedGoogle Scholar
  55. 55.
    Park, M.T., Lee, M.S., Choi, J.Y., Kim, S.C., and Lee, G.M. (2001) Orthophosphate anion enhances the stability and activity of endoxylanase from Bacillus sp. Biotechnol. Bioeng. 72, 434–440.PubMedCrossRefGoogle Scholar
  56. 56.
    Carninci, P., Nishiyama, Y., Westover, A., et al. (1998) Thermostabilization and thermoactivation of thermolabile enzymes by trehalose and its application for the synthesis of full length cDNA. Proc. Natl. Acad. Sci. USA 95, 520–524.PubMedCrossRefGoogle Scholar
  57. 57.
    Hristov, A.N., Ivan, M., Rode, L.M., McAllister, T.A. (2001) Fermentation characteristics and ruminal ciliate protozoal populations in cattle fed medium or high concentrate barley based diets. J. Anim Sci. 79, 515–524.PubMedGoogle Scholar
  58. 58.
    Lee, S.S., Ha, J.K., and Cheng, K. (2000) Relative contributions of bacteria, protozoa and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl. Environ. Microbiol. 66, 3807–3813.PubMedCrossRefGoogle Scholar
  59. 59.
    Devillard, E., Newbold, C.J., Scott, K.P., et al. (1999) A xylanase produced by the rumen anaerobic protozoan Polyplastron multivesiculatum shows close sequence similarity to family 11 xylanases from gram positive bacteria. FEMS Microbiol. Lett. 181, 145–152.PubMedCrossRefGoogle Scholar
  60. 60.
    Cosgrove, D.J. (1999) Enzymes and other agents that enhance cell wall extensibility. Annu. Ver. Plant Physiol. Plant Mol. Biol. 50, 391–417.CrossRefGoogle Scholar
  61. 61.
    Banik, M., Garret, T.P., and Fincher, G.B. (1996) Molecular cloning of cDNAs encoding (1,4)-β-xylan endohydrolases from the aleurone layer of germinated barley (Hordeum vulgare). Plant Mol. Biol. 31(6), 1163–1172.PubMedCrossRefGoogle Scholar
  62. 62.
    Banik, M., Li, C.D., Langridge, P., and Fincher, G.B. (1997) Structure, hormonal regulation, and chromosomal location of genes encoding barley (1,4)-β-xylan endohydrolases. Mol. Gen. Genet. 253, 599–608.PubMedCrossRefGoogle Scholar
  63. 63.
    See additional information in URL: http://www.ifrn.bbsrc.ac.uk/phytochemicals/Phy-Enzymo-sect3.htm.Google Scholar
  64. 64.
    Duarte, J.C. and Costa-Ferreira, M. (1994) Aspergilli and lignocellulosics, Enzymology and biotechnological applications FEMS Microbiol. Rev. 13, 377–386.Google Scholar
  65. 65.
    See additional information in URL: http://www.uoguelph.ca/botany/seedlab/lab.htmGoogle Scholar
  66. 66.
    578Abs Girard, C., and Jouanin, L. (1999) Molecular cloning of cDNAs encoding a range of digestive enzymes from a phytophagous beetle, Phaedon cochleariae Insect Biochem Mol. Biol. 29, 1129–1142.Google Scholar
  67. 67.
    Matoub, M. and Rouland, C. (1995) Purification and properties of the xylanases of the termite Macrotermes bellicosus and its symbiotic fungus Termitomyces sp. Comp. Biochem. Physiol. 112, 629–635.Google Scholar
  68. 68.
    Turkiewicz, M., Kalinowska, H., Zielinska, M., and Bielecki, S. (2000) Purification and characterization of two endo-1,4-β-xylanases from Antarctic krill, Euphausia superba Dana. Comp. Biochem. Physiol. 127, 325–335.CrossRefGoogle Scholar
  69. 69.
    Kudo, S. (1992) Enzymatic basis for protection of fish embryos by the fertilization envelope. Experientia. 48, 277–281.PubMedCrossRefGoogle Scholar
  70. 70.
    Inborr, J., Puhakka, J., Bakker, J.G., and Van der Meulen, J. (1999) β-glucanase and xylanase activities in stomach and ileum of growing pigs fed with wheat bran diets with and without enzyme treatment. Arch. Tierernahr. 52, 263–274.PubMedGoogle Scholar
  71. 71.
    Marounek, M., Vovk, S.J., and Skrivanova, V. (1995) Distribution of activity of hydrolytic enzymes in the digestive tract of rabbits. Br. J. Nutr. 73, 463–469.PubMedCrossRefGoogle Scholar
  72. 72.
    Ponpium, P., Ratanakhanokchai, K., and Kyu, K.L. (2000) Isolation and properties of a cellulosome-type multienzyme complex of the thermophilic Bacteroides sp. strain P-1. Enzyme Microb. Technol. 26, 459–465.CrossRefPubMedGoogle Scholar
  73. 73.
    Bayer, E.A., Morag, E., and Lamed, R. (1994) The cellulosome—a treasure-trove for biotechnology. TIBTECH. 12, 379–386.Google Scholar
  74. 74.
    Shoham, Y., Lamed, R., and Bayer, E.A. (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. TIBTECH. 7, 275–281.Google Scholar
  75. 75.
    Fierobe, H.-P., Mechaly, A., Tardif, C., et al. (2001). Design and production of active cellulosome chimeras: Selective incorporation of dockerin-containing enzymes into defined functional complexes. J. Biol. Chem. 276, 21257–21261.PubMedCrossRefGoogle Scholar
  76. 76.
    Morag, E., Bayer, E.A., and Lamed, R. (1990) Relationship of cellulosomal and non-cellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes. J. Bacteriol. 172, 6098–6105.PubMedGoogle Scholar
  77. 77.
    Ensor, L., Stosz, S., and Weiner, R. (1999) Expression of multiple insoluble complex polysaccharide degrading enzyme systems by a marine bacterium. J. Indus. Microbiol. Biotechnol. 23, 123–126.CrossRefGoogle Scholar
  78. 78.
    See additional information on URL: http://www.metu.edu.trhome.wwfbe/thesis/theabs/BTEC.html).Google Scholar
  79. 79.
    Morrison, M. and Miron, J. (2000) MiniReview: Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil proteins?. FEMS Microbiol. Lett. 185, 109–115.PubMedGoogle Scholar
  80. 80.
    Kim, Y.S., Singh, A.P., Wi, S.G., et al. (2001) Cellulosome-like structures in ruminal cellulolytic bacterium Ruminococcus albus F 40 as revealed by electron microscopy. Asian Aust. J. Anim. Sci. 14, 1429–1433.Google Scholar
  81. 81.
    Jindo, S., Karita, S., Fujino, E., et al. (2002) α-Galactosidase Aga27A, an enzymatic component of the Clostridium josui cellulosome. J. Bacteriol. 184, 600–604.CrossRefGoogle Scholar
  82. 82.
    Tamaru, Y., Karita, S., Ibrahim, A., Chen, H., and Doi. R.H. (2000) A large gene cluster of the Clostridium cellulovorans cellulosome. J. Bacteriol. 182, 5906–5910.PubMedCrossRefGoogle Scholar
  83. 83.
    Górska, E., Tudek, B., and Russel, S. (2001) Degradation of cellulose by nitrogen fixing strain of Bacillus polymyxa. Acta Microbiol. Polon. 50, 129–137.Google Scholar
  84. 84.
    Mishra, C., Forrester, I.T., Kelley, B.D., Burgess, R.R., and Leatham, G.F. (1990) Characterization of a major xylanase purified from Lentinula edodes cultures grown on a commercial solid lignocellulosic substrate. Appl. Microbiol. Biotechnol. 33, 226–232.CrossRefGoogle Scholar
  85. 85.
    Bajpai, P. (1999) Application of enzymes in the pulp and paper industry Biotechnol. Prog. 15, 147–157.Google Scholar
  86. 86.
    Clarke, J.H., Davidson, K., Rixon, J.E., Halstead, J.R., Fransen, M.P., Gilbert, H.J., and Hazlewood, G.P. (2000) A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and α-galactosidase. Appl. Microbiol. Biotechnol. 53, 661–667.PubMedCrossRefGoogle Scholar
  87. 87.
    Beg, O.K., Bhushan, B., Kapoor, M., and Hoondal, G.S. (2000) Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb. Technol. 27, 459–466.CrossRefPubMedGoogle Scholar
  88. 88.
    Viikari, L., Ranua, M., Kantelinen, A., Sundquist, J., and Linko, M. (1986) Bleaching with enzymes. In: Proceedings of the 34d Conference on Biotechnology and Pulp and Paper Industries, Stockholm, 16–19 June, pp. 67–69.Google Scholar
  89. 89.
    Kandeler, E. and Böhm, K.E. (1996) Temporal dynamics of microbial biomass, xylanase activity, N mineralization and potential nitrification in different tillage systems. Appl. Soil Ecol. 8, 181–191.CrossRefGoogle Scholar
  90. 90.
    Stemmer, S, Gerzabek, M., and Kandeler, E. (1999) Invertase and xylanase activity of bulk soil and particle size fractions during maize straw decomposition. Soil Biol. Biochem. 31, 9–8.CrossRefGoogle Scholar
  91. 91.
    Kandele, E., Stemmer, M., and Klimanek, E.M. (1999) Response of soil microbial biomass, urease and xylanase within particle size fractions to long term soil management. Soil Biol. Biochem. 31, 2161–2173.Google Scholar
  92. 92.
    Kandeler, E., Luxhaei, J., Tscherko, D., and Magid, J. (1999) Xylanase, invertase and protease activities at the soil litter interface of a sandy loam. Soil Biol. Biochem. 31, 1171–1179.CrossRefGoogle Scholar
  93. 93.
    Burton, S.G., Cowan, D.A., and Woodley, J.M. (2002) The search for the ideal biocatalyst. Nature. 20, 37–45.CrossRefGoogle Scholar
  94. 94.
    Kudo, T., Ohkoshi, A., and Horikoshi, K. (1985) Molecular cloning and expression of a xylanase gene of alkalophilic Aeromonas sp. No. 212 in Escherichia coli. J. Gen. Microbiol. 13, 2825–2830.Google Scholar
  95. 95.
    Whitehead, T.R. and Hespell, R.B. (1989) Cloning and expression in Escherichia coli of a xylanase gene from Bacteroides ruminicola 23. Appl. Environ. Microbiol. 55, 893–896.PubMedGoogle Scholar
  96. 96.
    Hu, Y.J., Smith, D.C., Cheng, K.J., and Foresberg, C.W. (1991) Cloning of a xylanase gene from Fibrobacter succinogenes 135 and its expression in Escherichia coli. Can. J. Microbiol. 37, 554–561.PubMedGoogle Scholar
  97. 97.
    Mondou, F., Shareck, F., Morosoli, R., and Kluepfel, D. (1986) Cloning of the xylanase gene of Streptomyces lividans. Gene. 49, 323–329.PubMedCrossRefGoogle Scholar
  98. 98.
    Luthi, E., Bhana, J.N., and Bergquist, P.L. (1990) Xylanase from the extremely thermophilic bacterium Caldocellum saccharolyticum: overexpression of the gene in Escherichia coli and characterization of the gene product. Appl. Environ. Microbiol. 56, 2677–2683.PubMedGoogle Scholar
  99. 99.
    Shendey, A. and Rao, M. (1993) Chromosomal gene integration and enhanced xylanase production in an alkalophilic thermophilic Bacillus sp. (NCIM 59). Biochem. Biophys. Res. Commun. 195, 776–784.CrossRefGoogle Scholar
  100. 100.
    Baba, T., Shinke, R., and Nanmori, T. (1994) Identification and characterization of clustered genes for a thermostable xylan degrading enzyme, β-xylosidase and xylanase of Bacillus stearothermophilus 21. Appl. Environ. Microbiol. 60, 2252–2258.PubMedGoogle Scholar
  101. 101.
    Robert, C.A., Yang, C., McKenzie, R., Bilous, D., and Narang, S.A. (1989) Hyperexpression of a Bacillus circulans xylanase gene in Escherichia coli and characterization of the gene product. Appl. Environ. Microbiol. 55, 1192–1195.Google Scholar
  102. 102.
    Jeong, K.J., Lee, P.C., Park, I.Y., Kim, M.S., and Kim, S.C. (1998) Molecular cloning and characterization of an endoxylanase gene of Bacillus sp. in Escherichia coli. Enzyme Microb. Technol. 22, 599–605.PubMedCrossRefGoogle Scholar
  103. 103.
    Suh, J. H., Eom, S. J., Cho, S-., G., and Choi, Y. J. (1996) Molecular cloning and expression of the β-xylosidase gene (xylB) of Bacillus stearothermophilus in Escherichia coli, J. Microbiol. Biotechnol. 6, 331–335.Google Scholar
  104. 104.
    Kubata, B.K., Suzuki, T., Ito, Y., et al. (1997) Cloning and expression of xylanase I gene (xyn A) of Aeromonas caviae ME-1 in Escherichia coli. J. Ferment. Bioeng. 83, 292–295.CrossRefGoogle Scholar
  105. 105.
    Sá-Pereira, P. (1994) Characterization of a β-1,4-endoglucanase codifying gene from Cellvibrio mixtus, expressed in Escherichia coli. (Abstract in English). MSc. Thesis. Technical University of Lisbon pp. 1–123.Google Scholar
  106. 106.
    Vian, A., Carrascosa, A.V., Garcia, J., and Cortés, E. (1998) Structure of the β-galactosidase gene from Thermus sp. Strain T2, Expression in Escherichia coli and purification in a single step of an active fusion protein Appl. Environ. Microbiol. 64, 2187–219.PubMedGoogle Scholar
  107. 107.
    Jung, K.H., Lee, K.M., Kim, H., et al. (1998) Cloning and expression of a Clostridium thermocellum xylanase gene in Escherichia coli. Biochem. Mol. Biol. Int. 44, 293–292.Google Scholar
  108. 108.
    Gupta, N., Reddy, V. S., Maiti, S., and Ghosh, A. (2000) Cloning, expression and sequence analysis of the gene encoding the alkali-stable thermostable endoxylanase from alkalophilic mesophilic Bacillus sp. Strain NG-27. Appl. Environ. Microbiol. 66, 2631–2635.PubMedCrossRefGoogle Scholar
  109. 109.
    Dwivedi, P.P., Gibbs, M.D., Saul, D.J., and Bergquist, P.L. (1996) Cloning, sequencing and overexpression in Escherichia coli of a xylanase gene, xynA from the thermophilic bacterium Rt8B.4 genus Caldicellulosiruptor. Appl. Microbiol. Biotechnol. 45, 86–93.PubMedCrossRefGoogle Scholar
  110. 110.
    Qureshy, A.F., Khan, L.A., and Khanna, S. (2000) Expression of Bacillus circulans Teri-42 xylanase gene in Bacillus subtilis. Enzyme Microb. Technol. 27, 227–233.CrossRefPubMedGoogle Scholar
  111. 111.
    Schlacher, A., Holzmann, K., Hayn, M., Steiner, W., and Schwab, H. (1996) Cloning and characterization of the gene for the thermostable xylanase XynA for Thermomyces languinosus. J. Biotechnol. 49, 211–218.PubMedCrossRefGoogle Scholar
  112. 112.
    Honda, H., Kudo, T., Ikura, Y., and Horikoshi, K. (1985) Two types of xylanases of alkalophilic Bacillus sp. No C-125. Can. J. Microbiol. 31, 538–542.Google Scholar
  113. 113.
    Ebanks, R., Dupont, M., Shareck, F., Morosoli, R., Kluepfel, D., and Dupont, C. (2000) Development of an Escherichia coli expression system and thermostability screening assay for libraries of mutant xylanase. J. Ind. Microbiol. Biotechnol. 25, 310–314.CrossRefPubMedGoogle Scholar
  114. 114.
    Karlsson, E.N., Dahlberg, L., Torto, N., Gorton, L., and Holst, O. (1998) Enzymatic specificity and hydrolysis pattern of the catalytic domain of the xylanase Xyn1 from Rhodothermus marinus. J. Biotechnol. 60, 23–35.PubMedCrossRefGoogle Scholar
  115. 115.
    Sunna, A. and Antranikian, G. (1996) Growth and production of xylanolytic enzymes by the extreme thermophilic anaerobic bacterium Thermotoga thermarum. Appl. Microbiol. Biotechnol. 45, 671–676.CrossRefGoogle Scholar
  116. 116.
    Blanco, J., Coque, J.J.R., Velasco, J., and Martin, J.F. (1997) Cloning, expression in Streptomyces lividans and biochemical characterization of a thermostable endo-β-1,4- xylanase of Thermomonospora alba UL JB1 with cellulose binding ability. Appl. Microbiol. Biotechnol. 48, 208–217.PubMedCrossRefGoogle Scholar
  117. 117.
    La Grange, D.C., Clayssens, M., Pretorius, I.S., and Van Zyl, W.H. (2000) Co-expression of the Bacillus pumilus β-xylosidase (xynB) gene with the Trichoderma reesei β-xylanase 2 (xyn2) gene in yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 54, 195–200.PubMedCrossRefGoogle Scholar
  118. 118.
    Li, X.-L. and Ljungdhal, L.G. (1996) Expression of Aureobasidium pullulans xynA in, and secretion of the xylanase from Saccharomyces cerevisiae. Appl. Environ. Microbiol. 62, 209–213.PubMedGoogle Scholar
  119. 119.
    Nuyens, F., Van Zyl, W.H., Iserentant, D., Verachtert, H., and Michiels, C. (2001) Heterologous expression of the Bacillus pumilus endo-β-xylanase (xynA) gene in the yeast Saccharomyces cerevisiae Appl. Microbiol. Biotechnol. 56, 431–434.PubMedCrossRefGoogle Scholar
  120. 120.
    Donald, K.A.G., Carle, A., Gibbs, M.D., and Bergquist, P.L. (1994) Production of a bacterial thermophilic xylanase in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 42, 309–312.Google Scholar
  121. 121.
    Jung, K.H. and Pack, M.Y. (1993) Expression of a Clostridium thermocellum xylanase gene in Bacillus subtilis. Biotechnol. Lett. 15, 115–120.CrossRefGoogle Scholar
  122. 122.
    Tremblay, L. and Archibald, F. (1993) Production of a cloned xylanase in Bacillus cereus and its performance in kraft pulp prebleaching. Can. J. Microbiol. 39, 853–860.PubMedGoogle Scholar
  123. 123.
    Scheirlinck, T., De Meutter, J., Arnaut, G., Joos, H., Claeyssens, M., and Michiels F. (1990) Cloning and expression of cellulase and xylanase genes in Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 33, 534–541.CrossRefGoogle Scholar
  124. 124.
    Ruiz-Arribas, A., Fernandez-Abalos, J.M., Sanchez, P., Garda, A.L., and Santamaria, R. (1995) Overproduction, purification and biochemical characterization of a xylanase (Xyn1) from Streptomyces halstedii JM88. Appl. Environ. Microbiol. 61, 2414–2419.PubMedGoogle Scholar
  125. 125.
    Kimura, T., Kitamoto, N., Kito, Y., Karita, S., Sakka, K., and Ohmiya, K. (1998) Molecular cloning of xylanase gene xynG1 from Aspergillus oryzae KBN 616, a Shoyu Koji Mold, and analysis of its expression. J. Ferment. Bioeng. 85, 10–16.CrossRefGoogle Scholar
  126. 126.
    Clark, E.M., Ilmén, M., and Pentillä, M. (1997) Expression patterns of ten hemicellulase genes of the filamentous fungus Trichoderma reeseion various carbon sources. J. Biotechnol. 57, 167–179.CrossRefGoogle Scholar
  127. 127.
    Saarelainen, R., Paloheimo, M., Fagerström, R., Suominen, P.L., and Nevalainen, K.M.H. (1993) Cloning, sequencing and enhanced expression of the Trichoderma reesei endoxylanase II (pI 9) gene xln2. Mol. Gen. Genet. 241, 497–503.PubMedCrossRefGoogle Scholar
  128. 128.
    Fernandes, A.C., Fontes, C.M.G.A., Gilbert, H.J., Hazlewood, G.P., Fernandes, T.H., and Ferreira, L.M.A. (1999) Homologous xylanases from Clostridium thermocellum, evidence for bi-functional activity, synergism between catalytic modules and the presence of xylan-binding domains in enzyme complexes. Biochem. J. 342, 105–110.PubMedCrossRefGoogle Scholar
  129. 129.
    Fontes, C.M.G.A., Ali, S., Gilbert, H.J., Hazlewood, G.P., Hirst, B.H., and Hall, H. (1999) Bacterial xylanase expression in mammalian cells and transgenic mice. J. Biotechnol. 72, 95–101.PubMedCrossRefGoogle Scholar
  130. 130.
    Herbers, K., Wilke, I., and Sonnewald, U. (1995) A thermostable xylanase from Clostridium thermocellum expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. BioTech. 13, 63–66.CrossRefGoogle Scholar
  131. 131.
    Sun, J., Kawazu, T., Karita, S., Kimura, T., Sakka, K., and Ohmiya, K. (1997) High expression of the xylanase B gene from Clostridium stercorarium in tobacco cells. J. Ferment. Bioeng. 84, 219–223.CrossRefGoogle Scholar
  132. 132.
    Borisjuk, N.V., Borisjuk, L.G., Logendra, S., Petersen, F., Gleba, Y., and Raskin, I. (1999) Production of recombinant proteins in plant root exudates. Nature Biotech. 17, 466–469.CrossRefGoogle Scholar
  133. 133.
    See additional information in the URL: http://www.icgeb.trieste.it/RESEARCH/ND/Plant Transformation.htmGoogle Scholar
  134. 134.
    Doi, N. and Yanagawa, H. (1999) Minireview. Insertional gene technology. FEBS Lett. 457, 1–4.PubMedCrossRefGoogle Scholar
  135. 135.
    Aÿ, J., Götz, F. and Borriss, R. (1998) Structure and function of the Bacillus hybrid enzyme GluXyn 1: Native like jellyroll fold preserved after insertion of autonomous globular domain. Proc. Natl. Acad. Sci. USA. 95, 6613–6618.PubMedCrossRefGoogle Scholar
  136. 136.
    Kaneko, S., Iwamatsu, S., Kuno, A., Fujimoto, Z., Sato, Y., Yura, K., Go, M., Mizuno, H., Taira, K., Hasegawa, T., Kusakabe, I., and Hayashi, K. (2000) Module shuffling of a family F/10 xylanase: replacement of modules M4 and M5 of the FXYN of Streptomyces olivaceoviridis E-86 with those of the Cex of Cellulomonas fimi. Protein Eng. 13, 873–879.PubMedCrossRefGoogle Scholar
  137. 137.
    Shibuya, H., Kaneko, S., and Hayashi, K. (2000) Enhancement of the thermostability and hydrolytic activity of xylanase by random gene shuffling. Biochem. J. 349, 651–656.PubMedCrossRefGoogle Scholar
  138. 138.
    Ahsan, M.M., Kaneko, S., Wang, Q., et al. (2001) Capacity of Thermomonospora alba XylA to impart thermostability in family F/10 chimeric xylanases. Enzyme Microb. Technol. 28, 8–15.CrossRefPubMedGoogle Scholar
  139. 139.
    Georis, J., Esteves, F.L., Brasseur, J.L., et al. (2000) An additional aromatic interaction improves the thermostability and the thermophilicity of a mesophilic family 11 xylanase: Structural basis and molecular study. Protein Sci. 9, 466–475.PubMedGoogle Scholar
  140. 140.
    Tomme, P., Gilkes, N.R., Miller, R.C. Jr., Warren, A.J., and Kilburn, D.G. (1994) An internal cellulose-binding domain mediates adsorption of an engineered bifunctional xylanase/cellulase. Protein Eng. 7, 117–123.PubMedCrossRefGoogle Scholar
  141. 141.
    Chen, C.C. and Westpheling, J. (1998) Partial characterization of the Streptomyces lividans xylB promoter and its use for expression of a thermostable xylanase from Thermotoga maritima. Appl. Environ. Microbiol. 64, 4217–4225.PubMedGoogle Scholar
  142. 142.
    Lappalainen, A. (1986) Purification and characterization of xylanolytic enzymes from Trichoderma reesei. Biotech. Appl. Biochem. 8, 437–448.Google Scholar
  143. 143.
    Sardar, M., Roy, I. and Gupta, M.N. (2000) Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversible soluble polymer Eudragit TM L-100. Enzyme Microb. Technol. 27, 672–679.CrossRefPubMedGoogle Scholar
  144. 144.
    Sá-Pereira, P., Duarte, J., and Costa-Ferreira, M. (2000) Electroelution as a simple and fast protein purification method, isolation of an extracellular xylanase from Bacillus sp. CCMI 966. Enzyme Microb. Technol. 27, 95–99.CrossRefPubMedGoogle Scholar
  145. 145.
    Bim, M.A. and Franco, T.T. (2000) Extraction in aqueous two phase systems of alkaline xylanase produced by Bacillus pumilus and its application in kraft pulp bleaching. J. Chromatogr. B. Biomed. Sci. Appl. 743, 349–356.PubMedCrossRefGoogle Scholar
  146. 146.
    Costa, S.A., Pessoa A., Jr, and Roberto, I.C. (1998) Xylanase recovery. Effect of conditions on the aqueous two phase system using experimental design. Appl. Biochem. Biotechnol. 70/72, 629–639.Google Scholar
  147. 147.
    Kulkarni, N., Vaidya, A., and Rao, M. (1999) Extractive cultivation of recombinant Escherichia coli using aqueous two phase systems for production and separation of extracellular xylanase. Biochem. Biophys. Res. Commun. 255, 274–278.PubMedCrossRefGoogle Scholar
  148. 148.
    Ritschkoff, A.-C., Buchert, J., and Viikari, L. (1994) Purification and characterization of a thermophylic xylanase from the brown-rot fungus Gloeophyllum trabeum. J. Biotechnol. 32, 67–74.CrossRefGoogle Scholar
  149. 149.
    Gessesse, A. and Mamo, G. (1998) Purification and characterization of an alkaline xylanase from alkaliphilic Micrococcus sp. AR-135. J. Indust. Microbiol. Biotechnol. 20, 210–214.CrossRefGoogle Scholar
  150. 150.
    Winterhalter, C. and Liebl, W. (1995) Two extremely thermostable xylanases of the hyperthermophilic Thermotoga maritima MSB8. Appl. Environ. Microbiol. 61, 1810–1815.PubMedGoogle Scholar
  151. 151.
    Saha, B.C. (2001) Xylanase from a newly isolated Fusarium verticillioides capable of utilizing corn fiber xylan. Appl. Microbiol. Biotechnol. 56, 762–766.PubMedCrossRefGoogle Scholar
  152. 152.
    Breccia, J.D., Siñeriz, F., Baigorí, M.D., Castro, G.R., and Hatti-Kaul, R. (1998) Purification and characterization of a thermostable xylanase from Bacillus amyloliquefaciens. Enzyme Microb. Technol. 22, 42–49.CrossRefGoogle Scholar
  153. 153.
    Georis, J., Giannotta, F., Buyl, E., Granier, B., and Frère, J.M. (2000) Purification and characterization of three endo-β-1,4-xylanases produced by Streptomyces sp. strain S38 which differ in their ability to enhance the bleaching of kraft pulps. Enzyme Microb. Technol. 26, 178–186.CrossRefPubMedGoogle Scholar
  154. 154.
    Bailey, M.J. (1988) A note on the use of dinitrosalicylic acid for determining the products of enzymatic reactions. Appl. Microbiol. Biotechnol. 29, 494–496.CrossRefGoogle Scholar
  155. 155.
    Silveira, F.Q.P., Sousa, M.V., Ricart, C.A.O., Milagres, A.M.F., Medeiros, C.L., and Filho, E.X.F. (1999) A new xylanase from Trichoderma harzianum strain. J. Indus. Microbiol. Biotechnol. 23, 682–685.CrossRefGoogle Scholar
  156. 156.
    Christakopoulos, P., Nerinckx, W., Kekos, D., Macris B., and Claeyssens M. (1996) Purification of two low molecular mass alkaline xylanases from Fusarium oxysporum F3. J. Biotechnol. 51, 181–189.PubMedCrossRefGoogle Scholar
  157. 157.
    Bataillon, M., Cardinali, A.-P.N., Castillon, N., and Duchiron, F. (2000) Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. Enzyme Microb. Technol. 26, 187–192.CrossRefPubMedGoogle Scholar
  158. 158.
    Khasin, A., Alchanati, I., and Shoham, Y. (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59, 1725–1730.PubMedGoogle Scholar
  159. 159.
    Bronnenmeier, K., Kern, A., Liebl, W., and Staudenbauer, W.L. (1995) Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl. Environ. Microbiol. 61, 1399–1407.PubMedGoogle Scholar
  160. 160.
    Okazaki, W., Akiba, T., Horikoshi, K., and Akahoshi, R. (1985) Purification and characterization xylanases from alkalophilic thermophilic Bacillus spp.. Agric. Biol. Chem. 49, 2033–2039.Google Scholar
  161. 161.
    Belancic, A., Scarpa, J., Peirano, A., Díaz, R., Steiner, J., and Eyzaguirre, J. (1995) Penicillium purpurogenum produces several xylanases. Purification and properties of two of the enzymes. J. Biotechnol. 4, 71–79.CrossRefGoogle Scholar
  162. 162.
    Lin, J., Ndlovu, L.M., Singh, S., and Pillay, B. (1999) Purification and biochemical characteristics of β-d-xylanase from a thermophilic fungus, Thermomyces lanuginosus-SSBP. Biotechnol. Appl. Biochem. 30, 73–79.PubMedGoogle Scholar
  163. 163.
    Bernier, R., Jr. Desrochers, M., Jurasek, L., and Paice, M.G. (1983) Isolation and characterization of a xylanase from Bacillus subtilis. Appl. Environ. Microbiol. 46, 511–514.PubMedGoogle Scholar
  164. 164.
    Raj, K.C. and Chandra, T.S. (1996) Purification and characterization of xylanase from alkali tolerant Aspergillus fisheri Fxn1. FEMS Microbiol. Lett. 145, 457–461.PubMedCrossRefGoogle Scholar
  165. 165.
    Pham, D.Q.-D., Hice, R.H., Sivasubramanian, N., and Federici, B.A. (1993) The 1629-bp open reading frame of the Autographa californica multinucleocapsid nuclear polyhedrosis virus codes for a virion structural protein. Gene. 137, 275–280.PubMedCrossRefGoogle Scholar
  166. 166.
    Ziemer, M.A., Mason, A., and Carlson, D.M. (1982) Cell-free translations of proline-rich protein mRNAs. J. Biol. Chem. 18, 11176–11180.Google Scholar
  167. 167.
    Karlsson, E.N., Bartonek-Roxa, E., and Holst, O. (1998) Evidence for substrate binding of a recombinant thermostable xylanase originating from Rhodothermus marinus. FEMS Microbiol. Lett. 168, 1–7.PubMedCrossRefGoogle Scholar
  168. 168.
    Tuohy, M.G., Puls, J., Claeyssens, M., Vrsanska, M., and Coughlan M.P. (1993) The xylan degrading enzyme system of Talaromyces emersonii: Novel enzymes with activity against aryl-β-D-xylosides and unsubstituted xylan Biochem. J. 290, 515–523.PubMedGoogle Scholar
  169. 169.
    Yinbo, O., Peiji, G., Dong, W., Xin, Z., and Xiao, Z. (1996) Production characterization and application of the cellulase-free xylanase from Aspergillus niger. Appl. Biochem. Biotechnol. 57/58, 375–381.CrossRefGoogle Scholar
  170. 170.
    Taipa, M.A., Aires-Barros, M.R., and Cabral, J.M.S. (1992) Minireview. Purification of lipases. J. Biotechnol. 26, 111–142.PubMedCrossRefGoogle Scholar
  171. 171.
    Cunha, M.T. Cabral, J.M.S. Aires-Barros, M.R., and Tjerneld, F. (2000) Effect of salts and surfactants on the partitioning of Fusarium solani pisi cutinase in aqueous two phase systems of thermoseparating ethylene oxide/propylene oxide random copolymer and hydroxypropyl starch. Biosep. 9, 203–209.CrossRefGoogle Scholar
  172. 172.
    Costa, M.J.L., Cunha, M.T., Cabral, J.M.S., and Aires-Barros, M.R. (2000) Scale up of a recombinant cutinase whole broth extraction with PEG phosphate aqueous two-phase systems. Biosep. 9, 231–238.CrossRefGoogle Scholar
  173. 173.
    Cunha, M.T. and Aires-Barros, M.R. (2002) Large scale extraction of proteins Mol. Biotechnol. 20, 29–40.PubMedCrossRefGoogle Scholar
  174. 174.
    Sturesson, S., Tjerneld, F., and Johansson, G. (1990) Partition of macromolecules and cell particles in aqueous two-phase system based on hydroxypropyl starch and poly(ethylene glycol). Appl. Biochem. Biotechnol. 26, 281–295.PubMedGoogle Scholar
  175. 175.
    Rodrigues, E. M. G., Pessoa A., Jr., and Milagres, A. M. F. (1999) Screening of variables in xylanase recovery using BDBAC reversed micelles. Appl. Biochem. Biotechnol. 77/99, 779–788.CrossRefGoogle Scholar
  176. 176.
    Rodrigues, E.M.G., Milagres, A.M.F., and Pessoa, A. Jr., (1999) Selective recovery of xylanase from Penicillium janthinellum using BDBAC reversed micelles. Acta Biotechnol. 19, 157–161cCrossRefGoogle Scholar
  177. 177.
    See additional information on URL: http://www.ipst.edu/faculty/ragauskas_bio_map.htmGoogle Scholar
  178. 178.
    Shpigel, E., Goldlust, A., Eshel, A., et al. (2000) Expression, purification and applications of staphylococcal Protein A fused to cellulose binding domain. Biotechnol. Appl. Biochem. 31, 197–203.PubMedCrossRefGoogle Scholar
  179. 179.
    Millward-Saddler S.J., Poole, D.M., Henrissat, B. et al. (1994) Evidence for a general role for high affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol. Microbiol. 11, 375–382.CrossRefGoogle Scholar
  180. 180.
    Linder, M. and Teeri, T.T. (1997) The roles and function of cellulose-binding domains. J. Biotechnol. 57, 15–28.CrossRefGoogle Scholar
  181. 181.
    Doheny, J.G., Jervis, E.J., Guarna, M.M., Humphries, R.K., Warren, R.A.J., and Kilburn, D.G. (1999) Cellulose as an inert matrix for presenting cytokines to target cells, production and properties of a stem cell factor- cellulose-binding domain fusion protein. Biochem. J. 339, 429–434.PubMedCrossRefGoogle Scholar
  182. 182.
    Linder, M., Nevanen, T., Söderholm, L., Bengs, O., and Teeri, T.T. (1998) Improved immobilization of fusion proteins via cellulose-binding domains. Biotechnol. Bioeng. 60, 642–647.PubMedCrossRefGoogle Scholar
  183. 183.
    See additional information on the URL: http://www.agtechfund.com/potfolio/cbd.htmGoogle Scholar
  184. 184.
    Zilliox, C. and Debeire, P. (1998) Hydrolysis of wheat straw by a thermostable endoxylanase. Adsorption and kinetic studies. Enzyme Microb. Technol. 22, 58–63.CrossRefGoogle Scholar
  185. 185.
    Gessesse, A. (1998) Purification of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp. Appl. Environ. Microbiol. 64, 3533–3535.PubMedGoogle Scholar
  186. 186.
    Dey, D., Hinge, J., Shendye, A., and Rao, M. (1992) Purification and properties of extracellular endoxylanases from alkalophilic thermophilic Bacillus sp.. Can. J. Microbiol. 38, 436–442.Google Scholar
  187. 187.
    Nakamura, S., Wakabayashi, K., Nakai, R., Aono, R., and Horikoshi, K. (1993) Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl. Environ. Microbiol. 59, 2311–2316.PubMedGoogle Scholar
  188. 188.
    Blanco, A., Vidal, T., Colom, J.F., and Pastor, F.I.J. (1995) Purification and properties of xylanase A from an alkali-tolerant Bacillus sp. strain BP-23. Appl. Environ. Microbiol. 61, 4468–4470.PubMedGoogle Scholar
  189. 189.
    Dhillon, A., Gupta, J. K., and Khanna, S. (2000) Enhanced production, purification and characterization of a novel cellulase-poor thermostable, alkalitolerant xylanase from Bacillus circulans AB 16. Process Biochem. 35, 849–856.CrossRefGoogle Scholar
  190. 190.
    Esteban, R., Villanueva, J.R., and Villa, T.G. (1982) β-d-xylanases of Bacillus circulans WL-12. Can. J. Microbiol. 28, 733–739.Google Scholar
  191. 191.
    Morales, P., Madarro, A., Pérez-González, J.A., et al. (1993) Purification and characterization of alkaline xylanases from Bacillus polymyxa. Appl. Environ. Microbiol. 59, 1376–1382.PubMedGoogle Scholar
  192. 192.
    Breccia, J.D., Torto, N., Gorton, L., Siñeriz, F., and Hatti-Kaul, R. (1998) Specificity and mode of action of a thermostable xylanase from Bacillus amyloliquefaciens on-line monitoring of hydrolysis products. Appl. Biochem. Biotechnol. 69, 31–40.Google Scholar
  193. 193.
    Christakopoulos, P., Nerinckx, W., Kekos, D., Macris, B., and Claeyssens, M. (1997) The alkaline xylanase III from Fusarium oxysporum F3 belongs to family F/10. Carbohydr. Res. 302, 191–195.PubMedCrossRefGoogle Scholar
  194. 194.
    Kaneko, S., Kuno, A., Muramatsu, M., et al. (2000) Purification and characterization of a family G/11 β-xylanase from Streptomyces olivaceoviridis E-86. Biosci. Biotechnol. Biochem. 64, 447–451.PubMedCrossRefGoogle Scholar
  195. 195.
    Biswas, S.R., Jana, S.C., Mishra, A.K., and Nanda, G. (1989) Production, purification and characterization of xylanase from a hyperxylanolytic mutant of Aspergillus ochraceus. Biotechnol. Bioeng. 35, 244–251.CrossRefGoogle Scholar
  196. 196.
    Dobberstein, J. and Emeis, C.C. (1989) β-xylanase produced by Aureobasidium pullulans CBS 58475. Appl. Microbiol. Biotechnol. 32, 262–268.CrossRefGoogle Scholar
  197. 197.
    Dahlberg, L., Holst, O., and Kristjansson, J.K. (1993) Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl. Microbiol. Biotechnol. 40, 63–68.CrossRefGoogle Scholar
  198. 198.
    Liu, W., Zhu, W., Lu, Y., Kong, J., and Guirong, M.A. (1998) Production, partial purification and characterization of xylanase from Trichosporon cutaneum SL409. Process Biochem. 33, 331–336.CrossRefGoogle Scholar
  199. 199.
    Segura, B.G. and Fevre, M. (1993) Purification and characterization of two 1,4-β-xylan endohydrolases from the rumen fungus Neocalimastix frontalis. Appl. Environ. Microbiol. 59, 3654–3660.Google Scholar
  200. 200.
    Sales, B.C., Cunha, R.B., Fontes, W., Sousa, M.V., and Filho, E.X.F. (2000) Purification and characterization of a new xylanase from Acrophialophora nainiana. J. Biotechnol. 81, 199–204.CrossRefGoogle Scholar
  201. 201.
    Gilbert, M., Breuil, C., Yaguchi, M., and Saddler, J.N. (1992) Purification and characterization of a xylanase from thermophilic ascomycete Thielavia terrestris 255B. Appl. Biochem. Biotechnol. 34/35, 247–259.CrossRefGoogle Scholar
  202. 202.
    Silva, R., Yim, D.G.K., and Park, Y.K. (1994) Application of thermostable xylanases from Humicola sp. for pulp improvement. J. Ferment. Bioeng. 77, 109–111.CrossRefGoogle Scholar
  203. 203.
    Cortez, E.V., and Pessoa A. Jr, (1999) Xylanase and β-xylosidase separation by fractional precipitation. Process Biochem. 35, 277–283.CrossRefGoogle Scholar
  204. 204.
    Rogalski, J., Oleszek, M., and Z.adora, T.J. (2001) Purification and characterization of two endo-1,4-β-xylanases and β-xylosidase from Plebia radiata. Acta Microbiol. Polon. 50, 117–128.Google Scholar
  205. 205.
    Caspers, M.P.M., Lok, F., Sinjorgo, K.M.C., et al. (2001) Synthesis, processing and export of cytoplasmic endo-β-1,4-xylanase from barley aleurone during germination. Plant J. 26, 191–204.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Paula Sá-Pereira
    • 1
  • Helena Paveia
  • Maria Costa-Ferreira
  • Maria Raquel Aires-Barros
  1. 1.Department of Biotechnology, Unit of Bioengineering and BioprocessesEstrada do Pago do LuminarLisboaPortugal

Personalised recommendations