Skip to main content
Log in

Downstream processing in the biotechnology industry

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The biotechnology industry today employs recombinant bacteria, mammalian cells, and transgenic animals for the production of high-value therapeutic proteins. This article reviews the techniques employed in this industry for the recovery of these products. The methods reviewed extend from the centrifugation and membrane filtration for the initial clarification of crude culture media to the final purification of the products by a variety of membrane-based and chromatographic methods. The subject of process validation including validation of the removal of bacterial and viral contaminants from the final products is also discussed with special reference to the latest regulatory guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6. References

  1. Lehrman, S.N. (2000) in Annual Report of Genzyme Transgenics, Framingham, MA., U.S.A.

  2. Jack, K. (2001) Using transgenic cattle for the production of biologicals. Paper presented at the Conference on Production of Biopharmaceuticals (IBC Global Conferences), Hamburg, Germany.

  3. Theisen, M. (2001) Production of therapeutic proteins in transgenic plants. Paper presented at the Conference on Production of Biopharmaceuticals (IBC Global Conferences), Hamburg, Germany.

  4. Hamel, J-F.P. and Hunter, J.B. (1990). Modeling and applications of downstream processing — a survey of innovative strategies. in Downstream Processing and Bioseparation, ACS Symposium Series, (Hamel, J-F.P., Hunter, J.B. and Sikdar S.K., eds), ACS Chemical Society, Washington D.C., U.S.A.

    Google Scholar 

  5. Millipore Corporation (2000). Prefiltration and sterile filtration product selection guide: Optimised economics for biopharmaceutical applications. Lit.# SG 1 500EN00.

  6. Valax, P, and Georgion, G. (1993). Molecular characterization of (-lactamase inclusion bodies produced in E coliM. 1. Composition., Biotechnol. Prog. 9, 539–547.

    Article  PubMed  CAS  Google Scholar 

  7. Middleberg, A.P.J. (2000). Microbial cell disruption by high pressure homogenization. in Methods in Biotechnology, Vol 9: Downstream Processing of Proteins: Methods and Protocols (M. A. Desai, Ed.) Pub. Humana Press Inc., Totowa, N.J.

    Google Scholar 

  8. Vogels G. and Kula, M.R. (1992). Combination of enzymatic and/or thermal pretreatment with mechanical cell disintegration. Chem. Eng. Sci. 47, 123–131.

    Article  CAS  Google Scholar 

  9. Lutzer, R.G., Robinson, C.W., and Glick, B.R. (1994). Two stage process for increasing cell disruption of E. Coli for intracellular products recovery, in Proceedings of the 6th European Congress of Biotechnology, (Alberghina, A., Frontali, L and Sensi, P., eds). Elsevier Sciences B.V., Amsterdam, 111–121.

    Google Scholar 

  10. Baldwin, C. V. and Robinson, C.W. (1990). Disruption of Saccharomyces cerevisiae using enzymatic lysis combined with high pressure homogenization. Biotechnol. Tech., 4, 329–334.

    Google Scholar 

  11. Baldwin, C.V. and Robinson, C.W. (1994). Enhanced disruption of Candida utilis using enzymatic pretreatment and high pressure homogenization, Biotechnol. Bioeng., 43, 46–56.

    Article  PubMed  CAS  Google Scholar 

  12. Middleberg, A.P.J. (2000). Large scale recovery of protein inclusion bodies by continuous centrifugation in Methods in Biotechnology, Vol. 9: Downstream Processing of Proteins: Methods and Protocols. (Desai, M.A., ed.), Humana Press Inc., Totowa, NJ.

    Google Scholar 

  13. Strathman, H. (1985). Membranes and membrane processes in biotechnology, Trends in Biotechnol. 35, 112–118.

    Article  Google Scholar 

  14. Belfort, G. (1987). in Advanced Biochemical Engineering (Bungay H.R. and Belfort, G., eds), Wiley and Sons, New York, NY, U.S.A.

    Google Scholar 

  15. Michaels, M., Michaels, A.S., Antoniou, C., et al. (1985). Tangential flow filtration. in Separations Technology: Pharmaceutical and Biotechnology Applications, (Olson, W.P., ed), Interpharm Press, Inc., Buffalo Grove, IL, U.S.A.

    Google Scholar 

  16. Vaheri, A., Gazzei, G. and Genna, G. (1981). Tangential flow filtration of Bordetella pertusis submerged cultures. Experentia, 35, 1535–1536.

    Google Scholar 

  17. Shibley, G.P., Manousas, M., Munch, K., Zelljadt, I., Fisher, L., and Mayyas, S. (1980). New method for large scale growth and concentration of Epstein Barr viruses. Appl. Environ. Microbiol. 40, 633–639.

    Google Scholar 

  18. Bellini, W.J., Trudgett, A., and McFarlin, D.E. (1979). Purification of measles virus with preservation of infectivity and antigenicity. J. Gen. Virol. 43, 633–639.

    Article  PubMed  CAS  Google Scholar 

  19. Zydney, A.L. and Kuriyel, R. (2000). Protein concentration and buffer exchange using ultrafiltration. in Methods in Biotechnology, Vol. 9: Downstream Processing of Proteins: Methods and Protocols, (M.A. Desai, ed.), Humana Press Inc., Totowa, NJ.

    Google Scholar 

  20. Wells, C.M., Lyddiatt, A. and Patel, K. (1987). Liquid fluidized bed adsorption in biochemical recovery from biological suspensions, in Separations for Biotechnol., (Verral, M.S. and Hudson, M.J., eds.) Ch. 16, 217–224, Ellis Horwood Ltd., Chichester, U.K.

    Google Scholar 

  21. Draeger, N.M. and Chase, H.A. (1991). Liquid fluidized bed adsorption of proteins in the presence of cells. Bioseparations, 2, 67–80.

    CAS  Google Scholar 

  22. McCormick, D.K. (1993). Expanded bed adsorption: The first new unit operation in decades. Bio/Technology, 11, 1059.

    Article  PubMed  CAS  Google Scholar 

  23. Chase, H.A. (1994). Purification of proteins by adsorption chromatography in expanded beds. TIBTECH, 12, 296–303.

    CAS  Google Scholar 

  24. Lihme, A., Hansen, M., Olander, M. and Zafirakos, E. (2000). Expanded bed adsorption in the purification of biomolecules, in Methods in Biotechnology, Vol. 9: Downstream Processing of Proteins: Methods and Protocols, (Desai, M.A., ed.), Humana Press Inc., Totowa, NJ.

    Google Scholar 

  25. Desai, M.A., Rayner, M., Burns, M. and Bermingham, D. (2000). Applications of chromatography in down-stream processing of biomolecules. in Methods in Biotechnology, Vol. 9: Downstream Processing of Proteins: Methods and Protocols, (Desai, M.A., ed.), Humana Press Inc., Totowa, NJ.

    Google Scholar 

  26. Mazek, J. and Kypr, J. (1992). Nucleotide composition of genes and hydrophobicity of the encoded proteins. FEBS Lett. 305, 163–165.

    Article  PubMed  CAS  Google Scholar 

  27. Eriksson, K. (1989). in Protein purification (Rydén, J., ed.), VCH, New York, NY.

    Google Scholar 

  28. Hearn, M.T.W. (1989). in Protein purification (Rydén, J., ed), VCH, New York, NY.

    Google Scholar 

  29. Manzke, O., Tesch, H., Diehl, V. and Bohlen, H. (1997). Single step purification of biospecific monoclonal antibodies for immunotherapeutic use by hydrophobic interaction chromatography. J. Immunol. Methods, 208, 65–73.

    Article  PubMed  CAS  Google Scholar 

  30. Gel Filtration: Principles and Methods, 6th edition, Pharmacia Biotech., Uppsala, Sweden.

  31. Desai, M.A. (2000). Immunoaffinity adsorption in the large scale isolation of biomolecules, in Methods in Biotechnology, Vol. 9: Downstream Processing of Proteins: Methods and Protocols, (Desai, M.A., ed.) Humana Press, Inc., Totowa, NJ.

    Google Scholar 

  32. Walters, R. (1985). Affinity Chromatography. Anal. Chem. 57, 1099A-1114A.

    Article  PubMed  CAS  Google Scholar 

  33. Jervis, L. (1987). Polymers in affinity chromatography in Developments in Polymer Reagents, Catalysts and Adsorbents (Hodge, P. and Sherringtoon, D.C., eds.), Wiley, London, U.K., pp.65–96.

    Google Scholar 

  34. Sada, E., Katoh, S., Sukai, K., Tohma, M. and Kondo, A. (1986). Adsorption equilibrium in immunoaffinity chromatography with polyclonal and monoclonal antibodies. Biotechnol. Bioeng. 28, 1497–1502.

    Article  CAS  PubMed  Google Scholar 

  35. Desai, M.A. (1990) Immunoaffinity adsorption: Process scale isolation of therapeutic grade biochemicals. J. Technol. Biotechnol. 48, 105–106.

    Article  CAS  Google Scholar 

  36. Nelsen, L.N. (1978) Removal of pyrogens from parenteral solutions by ultrafiltration. Pharma. Technol. 2(5), 46–49, 80.

    CAS  Google Scholar 

  37. Gabler, F.R. (1987). Pyrogens and the depyrogenation of solutions with ultrafiltration membranes. in Filtration in the Pharmaceutical Industry, (Meltzer, T., Ed.), Marcel Dekker, New York, NY.

    Google Scholar 

  38. Abramson, D., Butler, D. and Chrai, S. (1981). Depyrogenation of a parenteral solution by ultrafiltration. J. Parent. Sci. Technol. 35 (1), 3–7.

    CAS  Google Scholar 

  39. Kalyanpur, M., (2000). Validation of sterilising filters in the biotechnology industry, in Methods in Biotechnology, Vol. 9: Downstream Processing of Proteins: Methods and Protocols, (Desai, M.A., ed.), Humana Press, Inc., Totowa, NJ.

    Google Scholar 

  40. U.S. Food and Drug Administration (1987). Guideline on Sterile Drug Products Produced by Aseptic Processing, Center for Drugs and Biologics, Rockville, MD, U.S.A.

    Google Scholar 

  41. ICH Topic Q 5 A: Quality of Biotechnological Products — Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin, European Agency of the Evaluation of Medicinal Products, Human Medicines Evaluation Unit, (CPMP/ICH/295/95), March 1997.

  42. Burnouf-Radosevich, M., Appourchaux, P., Huart, J.J. and Burnhouf, T. (1994). Nanofiltration, a new specific virus elimination method applied to high purity Factor IX and Factor IX concentrates. Vox Sang 67, 132–138.

    Article  PubMed  CAS  Google Scholar 

  43. Hoffer, L., Schwinn, H., Biesert, H., and Josic, D. (1995). Improved virus safety and purity of a chromatographically produced Factor IX concentrate by nanofiltration. J. Chromatogr. 669, 187–196.

    Article  CAS  Google Scholar 

  44. DiLeo, A.J., Vacante, D.A., and Dean, E.F. (1993a). Size exclusion removal of model mammalian viruses using a unique membrane system, Part I: Membrane qualification. Biologicals, 21, 275–286.

    Article  PubMed  CAS  Google Scholar 

  45. DiLeo, A.J., Vacante D.A., and Dean, E.F. (1993b). Size exclusion removal of model mammalian viruses using a unique membrane system, Part II: Module qualification and process simulation. Biologicals, 21, 287–296.

    Article  PubMed  CAS  Google Scholar 

  46. Levy, R.V., Phillips, M., and Lutz, H. (1998) Filtration and removal of viruses from biopharmaceuticals, in Filtration in the Biopharmaceutical Industry, (Meltzer, T.H. and Jorintz, M.W., eds.), Marcel Dekker, New York, NY.

    Google Scholar 

  47. Darling, A.J. (2000). Design and interpretation of Viral Clearance Studies for Biopharmaceutical Products, in Methods in Biotechnology, Vol. 9: Downstream Processing of Proteins: Methods and Protocols (Desai, M.A., ed) Humana Press Inc., Totowa, NJ.

    Google Scholar 

  48. U. S. Food and Drug Administration, Center for Drugs, Biologics, Devices and Radiologic Health (1987). Guidelines on general principles of process validations, Rockville, MD.

  49. Commission of the European Communities (1989). Guide to good manufacturing of medicinal products, Vol. IV. The rules governing medicinal products in the European community, Luxembourg, Office for Official Publications of the European Communities.

  50. Michaels, S.L. (1991). Validation of tangential flow filtration systems. J. Parent. Sci. and Technol. 45 (5), 218–223.

    CAS  Google Scholar 

  51. Millipore Corporation, Bedford, MA, U.S.A. (1990). Validation of tangential flow filtration (TFF) systems, lit. # TB 052.

  52. Parenteral Drug Association (1992). Industry perspective on the validation of column-based separation processes for the purification of proteins. J. Parent. Sci. and Technol. 46, 87–97.

    Google Scholar 

  53. Kuwahara, S.S. and Chuan, J.H. (1995). Process validation of separation systems in Separations Technology: Pharmaceutical and Biotechnology Applications, (Olson, W.P., ed.), Interpharm Press, Inc., Buffalo Grove, IL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyanpur, M. Downstream processing in the biotechnology industry. Mol Biotechnol 22, 87–98 (2002). https://doi.org/10.1385/MB:22:1:087

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:22:1:087

Index Entries

Navigation