Molecular Biotechnology

, Volume 20, Issue 2, pp 163–179 | Cite as

Characteristics and applications of nucleic acid sequence-based amplification (NASBA)

  • Birgit Deiman
  • Pierre van Aarle
  • Peter Sillekens


Nucleic acid sequence-based amplification (NASBA) is a sensitive, isothermal, transcription-based amplification system specifically designed for the detection of RNA targets. In some NASBA systems, DNA is also amplified though very inefficiently and only in the absence of the corresponding RNA target or in case of an excess (>1000-fold) of target DNA over RNA. As NASBA is primer-dependent and amplicon detection is based on probe binding, primer and probe design rules are included. An overview of various target nucleic acids that have been amplified successfully using NASBA is presented. For the isolation of nucleic acids prior to NASBA, the “Boom” method, based on the denaturing properties of guanidine isothiocyanate and binding of nucleic acid to silica particles, is preferred. Currently, electro-chemiluminescence (ECL) is recommended for the detection of the amplicon at the end of amplification. In the near future, molecular beacons will be introduced enabling “real-time detection,” i.e., amplicon detection during amplification. Quantitative HIV-1 NASBA and detection of up to 48 samples can then be performed in only 90 min.

Index Entries

NASBA primer design isolation ECL molecular beacon RT-PCR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Compton, J. (1991) Nucleic acid sequence-based amplification. Nature 350, 91–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Guatelli, J., Whitfield, K., Kwoh, D., Barringer, K., Richman, D., and Gingeras, T. (1990) Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retrovirus replication. Proc. Natl. Acad. Sci. USA 87, 1874–1878.PubMedCrossRefGoogle Scholar
  3. 3.
    Chan, A. B. and Fox, J. D. (1999) NASBA and other transcription-based amplification methods for research and diagnostic microbiology. Reviews Med. Microbiol. 10, 185–196.Google Scholar
  4. 4.
    Sooknanan, R., van Gemen, B., and Malek, L. (1995) Nucleic acid sequence-based amplification. Molecular methods for virus detection, Academic press, London, UK, pp. 261–285.Google Scholar
  5. 5.
    Heim, A., Grumbach, I. M., Zeuke, S., and Top, B. (1998) Highly sensitive detection of gene expression of an intronless gene: amplification of mRNA, but not genomic DNA by nucleic acid sequence based amplification (NASBA). Nucleic Acids Res. 26, 2250–2251.PubMedCrossRefGoogle Scholar
  6. 6.
    Simpkins, S. A., Chan, A. B., Hays, J., Pöpping, B., and Cook, N. (2000) An RNA transcription-based amplification technique (NASBA) for the detection of viable Salmonella enterica. Lett. Appl. Microbiol. 30, 75–79.PubMedCrossRefGoogle Scholar
  7. 7.
    Voisset, C., Mandrand, B., and Paranhos-Baccala, G. (2000) RNA amplification technique, NASBA, also amplifies homologous plasmid DNA in non-denaturing conditions. BioTechniques 29, 236–240.PubMedGoogle Scholar
  8. 8.
    Greijer, A., Dekkers, C. A. J., and Middeldorp, J. M. (2000) Human cytomegalovirus virions differentially incorporate viral and host cell RNA during the assembly process. J. Virol. 74, 9078–9082.PubMedCrossRefGoogle Scholar
  9. 9.
    Boom, R., Sol, C. J. A., Salimans, M. M. M., Hansen, C. L., Wertheim-van Dillen, P. M. E., and Noordaa, van der J. (1990) Rapid and simple method for the purification of nucleic acids. J. Clin. Microbiol. 28, 495–503.PubMedGoogle Scholar
  10. 10.
    Dyer, J. R., Gilliam, B. L., Eron, J. J., Grosso, L., Cohen, M. S., and Fiscus, S. A. (1996) Quantification of human immunodeficiency virus type 1 RNA in cell free seminal plasma: comparison of NASBA™ with Amplicor™ reverse transcription-PCR amplification and correlation with quantitative culture. J. Virol. Methods 60, 161–170.PubMedCrossRefGoogle Scholar
  11. 11.
    Hale, A. D., Green, J., and Brown, D. W. G. (1996) Comparison of four RNA extraction methods for the detection of small round viruses in faecal specimens. J. Virol. Methods 57, 195–201.PubMedCrossRefGoogle Scholar
  12. 12.
    Strijp, van D. and Aarle, van P. (1995) NASBA: A method for nucleic acid diagnostics. Methods in Molecular Medicine, Humana Press, Totowa, NJ, 12, 331–340.Google Scholar
  13. 13.
    Morré, S. A., Sillekens, P. T., Jacobs, M. V., et al. (1996) RNA amplification by nucleic acid sequence-based amplification with an internal standard enables reliable detection of Chlamydia trachomatis in cervical scrapings and urine samples. J. Clin. Microbiol. 34, 3108–3114.PubMedGoogle Scholar
  14. 14.
    Cassol, S., Gill, M. J., Pilon, R., et al. (1997) Quantification of human immunodeficiency virus type 1 RNA from dried plasma spots collected on filter paper. J. Clin Microbiol. 35, 2795–2801.PubMedGoogle Scholar
  15. 15.
    Shepard, R. N., Schock, J., Robertson, K., et al. (2000) Quantitation of human immunodeficiency virus type 1 RNA in different biological compartments. J. Clin. Microbiol. 38, 1414–1418.PubMedGoogle Scholar
  16. 16.
    Soumitra, S., Fahy, E., and Gingeras, T. (1995) The self-sustained sequence replication reaction and its application in clinical diagnostics and molecular biology. Molecular methods for virus detection, Academic Press, London, UK, pp. 287–314.Google Scholar
  17. 17.
    Fahy, E., Kwoh, D. Y., and Gingeras, T. R. (1991) Self-sustained sequence replication (3SR): an isothermal transcription-based amplification system alternative to PCR. PCR Meth. Appl. 1, 25–33.Google Scholar
  18. 18.
    van Gemen, B., van Beuningen, R., Nabbe, A., van Strijp, D., Jurriaans, S., Lens, P., and Kievits, T. (1994) A one-tube quantitative HIV-1 RNA NASBA nucleic acid amplification assay using electrochemi-luminiscent (ECL) labelled probes. J. Virol. Methods 49, 157–168.PubMedCrossRefGoogle Scholar
  19. 19.
    Samuelson, A., Westmoreland, D., Eccles, R., and Fox, J. D. (1998) Development and application of a new method for amplification and detection of human rhinovirus RNA. J. Virol. Methods 71, 197–209.PubMedCrossRefGoogle Scholar
  20. 20.
    Darke, B. M., Jackson, S. K., Hanna, S. M., and Fox, J. D. (1998) Detection of human TNF-a mRNA by NASBA. J. Immunol. Method 212, 19–28.CrossRefGoogle Scholar
  21. 21.
    Oehlenschlager, F., Schwille, P., and Eigen, M. (1996) Detection of HIV-1 RNA by nucleic acid sequence-based amplification combined with fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. USA 93, 12,811–12,816.CrossRefGoogle Scholar
  22. 22.
    Arnold, L. J., Hammond, P. W., Wiese, W. A., and Nelson, N. C. (1989) Assay formats involving acridinium-ester-labeled DNA probes. Clin. Chem. 35, 1588–1594.PubMedGoogle Scholar
  23. 23.
    Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nature Biotech. 14, 303–308.CrossRefGoogle Scholar
  24. 24.
    Leone, G., van Schijndel, H., van Gemen, B., Kramer, F. R., and Schoen, C. D. (1998) Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Res. 26, 2150–2155.PubMedCrossRefGoogle Scholar
  25. 25.
    de Ronde, A., van Dooren, M., van der Hoek, L., et al. (2001) Establishment of new transmissible and drug-sensitive human immunodeficiency virus type 1 wild type due to transmission of nucleoside analogue-resistant virus. J. Virol. 75, 595–602.PubMedCrossRefGoogle Scholar
  26. 26.
    de Baar, M. P., van Dooren, M. W., de Rooij, E., et al. (2001) Single rapid real-time monitored isothermal RNA amplification assay for quantification of human immunodeficiency virus type 1 isolates from groups M, N, and O. J. Clin. Microbiol. 39, 1378–1384.PubMedCrossRefGoogle Scholar
  27. 27.
    Melsert, R., Damen, M., Cuypers, T., et al. (1997) Combined quantitation and genotyping of hepatitis C virus RNA using NASBA. In Hepatitis C virus: Genetic Heterogeneity and viral load, Paris, John Libbey Eurotext, pp. 79–88.Google Scholar
  28. 28.
    Notermans, D. W., de Wolf, F., Oudshoorn, P., et al. (2000) Evaluation of a second-generation nucleic acid sequence-based amplification assay for quantification of HIV type 1 RNA and the use of ultra-sensitive protocol adaptations. Aids Res. Hum. Retroviruses 16, 1507–1517.PubMedCrossRefGoogle Scholar
  29. 29.
    Murphy, D. G., Côté, L., Fauvel, M., René, P., and Vincelette, J. (2000) Multicenter comparison of Roche cobas amplicor monitor version 1.5, Organon Teknika NucliSens Qt with Extractor, and Bayer Quantiplex version 3.0 for quantification of human immunodeficiency virus type 1 RNA in plasma. J. Clin. Microbiol. 38, 4034–4041.PubMedGoogle Scholar
  30. 30.
    Beuningen, van R., Marras, S. A., Kramer, F. R., Oosterlaken, T., Weusten, J., Borst, G., and van der Wiel, P. (2001) Development of a high throughput detection system for HIV-1 using real-time NASBA based on molecular beacons. Genomics and Proteomics Technologies, Ramesh Raghavachari, Weihong Tan, eds., Proceedings of SPIE, 4264: 66–72.CrossRefGoogle Scholar
  31. 31.
    Wiel, van de P., Top, B., Weusten, J., and Oosterlaken, T. (2000) A new, high throughput NucliSens assay for HIV-1 viral load measurement based on real-time detection with molecular beacons. XIII International AIDS Conference, Durban, poster presentation.Google Scholar
  32. 32.
    Damen, M., Sillekens, P., Cuypers, H. T., Frantzen, I., and Melsert, R. (1999) Characterization of the quantitative HCV NASBA assay. J. Virol. Meth. 82, 45–54.CrossRefGoogle Scholar
  33. 33.
    Lunel, F., Cresta, P., Vitour, D., et al. (1999) Comparative evaluation of hepatitis C virus RNA quantitation by branched DNA, NASBA, and monitor assays. Hepatology 29, 528–535.PubMedCrossRefGoogle Scholar
  34. 34.
    Bestetti, A., Pierotti, C., Terreni, M., et al. (2001) Comparison of three nucleic acid amplification assays of cerebrospinal fluid for diagnosis of cytomegalovirus encephalitis. J. Clin. Microbiol. 39, 1148–1151.PubMedCrossRefGoogle Scholar
  35. 35.
    Blok, M. J., Goossens, V. J., van Herle, S. J., et al. (1998a) Diagnostic value of monitoring human cytomegalovirus late pp67 mRNA expression in renalallograft recipients by nucleic acid sequence-based amplification. J. Clin. Microbiol. 36, 1341–1346.PubMedGoogle Scholar
  36. 36.
    Gerna, G., Baldanti, F., Middeldorp, J. M., et al. (1999) Clinical significance of expression of human cytomegalovirus pp67 late transcript in heart, lung, and bone marrow transplant recipients as determined by nucleic acid sequence-based amplification. J. Clin. Microbiol. 37, 902–911.PubMedGoogle Scholar
  37. 37.
    Oldenburg, N., Lam, K. M. C., Khan, M. A., et al. (2000) Evaluation of human cytomegalovirus gene expression in thoracic organ transplant recipients using nucleic acid sequence-based amplification. Transplantation 70, 1209–1215.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang, F., Tetali, S., Wang, X. P., Kaplan, M.H., Cromme, F. V., and Ginocchio, C. C. (2000) Detection of cytomegalovirus pp67 late gene transcripts in cerebrospinal fluid of human immunodeficiency virus type 1-infected patients by nucleic acid sequence-based amplification. J. Clin. Microbiol. 38, 1920–1925.PubMedGoogle Scholar
  39. 39.
    Goossens, V. J., Blok, M. J., Christians, M. H. L., et al. (1999) Diagnostic value of nucleic-acid-sequence-based amplification for the detection of cytomegalovirus infection in renal and liver transplant recipients. Intervirology 42, 373–381.PubMedCrossRefGoogle Scholar
  40. 40.
    Aono, T., Kondo, K., Miyoshi, H., et al. (1998) Monitoring of human cytomegalovirus infections in pediatric bone marrow transplant recipients by nucleic acid sequence based amplification. J. Infect. Dis. 178, 1244–1249.PubMedCrossRefGoogle Scholar
  41. 41.
    Blok, M. J., Christiaans, M. H. L., Goossens, V. J. et al. (1998b) Evaluation of a new method for early detection of active cytomegalovirus infections. A study in kidney transplant recipients. Transpl. Int. 11(suppl 1), S107-S109.PubMedCrossRefGoogle Scholar
  42. 42.
    Greijer, A. E., Verschuuren, E. A. M., Harmsen, M. C., Adriaanse, H. M., and Middeldorp, J. M. (2001c) Direct quantification of human cytomegalovirus immediate-early and late mRNA levels in blood of long transplant recipients by competitive nucleic acid sequence-based amplification. J. Clin. Microbiol. 39, 251–259.PubMedCrossRefGoogle Scholar
  43. 43.
    Greijer, A, et al. (2001a) Quantitative competitive NASBA for measuring mRNA expression levels of the immediate early 1, late pp67, and immune evasion genes US3, US6, and US11 in cell infected with human cytomegalo-virus. J. Virol. Meth. 96, 133–141.CrossRefGoogle Scholar
  44. 44.
    Greijer, A. E., Verschuuren, E. A. M., Dekkers, C. A. J., et al. (2001b) Expression dynamics of human cytomegalovirus immune evasion genes US3, US6 and US11 in the circulation of solid organ transplant recipients. J. Infect. Dis., submitted.Google Scholar
  45. 45.
    Morré, S. A., Sillekens, P. T., Jacobs, M. V., et al. (1998) Monitoring of Chlamydia trachomatis infections after antibiotic treatment using RNA detection by nucleic acid sequence based amplification. J. Mol. Pathol. 51, 149–154.Google Scholar
  46. 46.
    van der Vliet, G., Cho, S-N., Kampirapap, K., et al. (1996) Use of NASBA® RNA amplification for detection of Mycobacterium leprae in skin biopsies from untreated and treated leprosy patients. Int. J. Lepr. Other Mycobact. Dis. 64, 396–403.PubMedGoogle Scholar
  47. 47.
    Ovyn, C., van Strijp, D., Ieven, M., Ursi, D., van Gemen, B., and Goossens, H. (1996) Typing of Mycoplasma pneumoniae by Nucleic Acid Sequence-Based Amplification, NASBA®. Molecular and Cellular Probes 10, 319–324.PubMedCrossRefGoogle Scholar
  48. 48.
    Uyttendaele, M., Schukkink, R., van Gemen, B., and Debevere, J. (1995) Development of NASBA, a nucleic acid amplification system, for identification of Listeria monocytogenes and comparison to ELISA and a modified FDA method. Int. J. Food Microbiol. 27, 77–89.PubMedCrossRefGoogle Scholar
  49. 49.
    Song, X., Coombes, B. K., and Mahony, J. B. (2000) Quantitation of Chlamydia trachomatis 16S rRNA using NASBA amplification and a bioluminescent microtiter plate assay. Comb. Chem. High Throughput Screening 3, 303–313.Google Scholar
  50. 50.
    Lanciotti, R. S., Kerst, A. J., Allen, B. C., and Velez, J. O. (2000) Development of a NASBA based assay for the rapid detection of west nile virus. American Society of Tropical Medicine and Hygiene 2000, Houston, Oct 29–Nov 2, poster presentation.Google Scholar
  51. 51.
    Wu, S. L., Putvatava, R., Lee, E. M., et al. (2000). Evaluation of nucleic acid sequence-based amplification (nasba) method for detection of dengue viral RNA. The 49th annual meeting of the American society of tropical medicine and hygiene. Houston, TX, USA. October 29–November 2–2000. AbstractGoogle Scholar
  52. 52.
    Fox, J. D., Han, S., Samuelson, A., Zhang, Y., Neale, M. L., and Westmoreland, D. (2001) Development and evaluation of nucleic acid sequence based amplification (NASBA) for diagnosis of enterovirus infections using the NucleiSens® Basic Kit. J. Clin. Virol. In press.Google Scholar
  53. 53.
    Ginocchio, C. C. (2000) Evaluations of NucliSens Basic Kit Applications: 1) Detection of Enterovirus 2) CCR5 genotyping of HIV infected patients. 16th Annual Clinical Virology Symposium and Annual Meeting Pan American Society for Clinical Virology, Clearwater, April 30–May 3.Google Scholar
  54. 54.
    Loeffler, J., Hebart, H., Cox, P., Flues, N., Schumacher, U., and Einsele, H. (2001) Nucleic acid sequence-based amplification of aspergillus RNA in blood samples. J. Clin. Microbiol. 39, 1626–1629.PubMedCrossRefGoogle Scholar
  55. 55.
    Mahony, J. B., Song, X., Chong, S., Faught, M., Salonga, T., and Kapala, J. (2001) Evaluation of the NucliSens Basic Kit for Detection of Chlamydia trachomatis and Neisseria gonorrhoeae in Genital Tract Specimens Using Nucleic Acid Sequence-Based Amplification of 16S rRNA. J. Clin. Microbiol. 39, 1429–1435.PubMedCrossRefGoogle Scholar
  56. 56.
    Uyttendaele, M., Bastiaansen, A., and Debevere, J. (1997) Evaluation of the NASBA nucleic acid amplification system for assessment of the viability of Campylobacter jejuni. Int. J. Food Microbiol. 37, 13–20.PubMedCrossRefGoogle Scholar
  57. 57.
    Widjojoatmodjo, M.N., Borst, A., Schukkink, R.A.F., et al. (1999) Nucleic Acid Sequence-Based Amplification (NASBA) detection of medically important Candida species. J. Microbiol. Meth. 38, 81–90.CrossRefGoogle Scholar
  58. 58.
    van Deursen, P. B. H., Gunther, A. W., Spaargarenvan Riel, C. C., et al. (1999) A novel quantitative multiplex NASBA method: application to measuring tissue factor and CD14 mRNA levels in human monocytes. Nucleic Acids Res. 27, e15 (i–vi).Google Scholar
  59. 59.
    Coombes, B. K. and Mahony, J. B. (2000) Nucleic Acid Sequence Based Amplification (NASBA) of Chlamydia pneumoniae major outer membrane protein (ompA) mRNA with bioluminescent detection. Comb. Chem. High Troughput Screen 3, 315–327.Google Scholar
  60. 60.
    Baeumner, A. J., Humiston, M. C., Montagna, R. A., and Durst, R. A. (2001) Detection of viable oocysts of Cryptosporidium parvum following nucleic acid sequence based amplification. Anal. Chem. 73, 1176–1180.PubMedCrossRefGoogle Scholar
  61. 61.
    Lambrechts, A. C., Bosma, A. J., Klaver, S. G., et al. (1999) Comparison of immunocytochemistry, reverse transcriptase polymerase chain reaction, and Nucleic Acid Sequence-Based Amplification for the detection of circulating breast cancer cells. Breast Cancer Res. Treat. 56, 219–231.PubMedCrossRefGoogle Scholar
  62. 62.
    Brink, A. A., Vervoort, M. B., Middeldorp, J. M., Meijer, C. J., and van den Brule, A. J. (1998) Nucleic Acid Sequence-Based Amplification, a new method for analysis of spliced and unspliced Epstein-Barr virus latent transcripts and its comparison with reverse transcriptase PCR. J. Clin. Microbiol. 36, 3164–3169.PubMedGoogle Scholar
  63. 63.
    Reitsma, P. H., van der Velden, P. A., Vogels, E., et al. (1996) Use of the direct RNA amplification technique NASBA to detect factor V Leiden, a point mutation associated with APC resistance. Blood Coagul. Fibrinolysis 7, 659–663.PubMedCrossRefGoogle Scholar
  64. 64.
    Hollingsworth, R. C., Sillekens, P., van Deursen, P., Neal, K. R., and Irving, W. L. (1996) Serum HCV RNA levels assessed by quantitative NASBA: stability of viral load over time, and lack of correlation with liver disease. The Trent HCV Study Group. J. Hepatol. 25, 301–306.PubMedCrossRefGoogle Scholar
  65. 65.
    Sooknanan, R., Malek, L., Wang, W.I., Siebert, T., and Keating, A. (1993) Detection and direct sequence identification of BCR-ABL mRNA in Ph+ chronic myeloid leukemia. Exp. Hematol. 21, 1719–1724.PubMedGoogle Scholar
  66. 66.
    Romano, J. W., Tetali, S., Lee, E. M., et al. (1999) Genotyping of the CCR5 chemokine receptor by isothermal NASBA amplification and differential probe hybridization. Clin. Diagn. Lab. Immunol. 6, 959–965.PubMedGoogle Scholar
  67. 67.
    Bruisten, S., van Gemen, B., Koppelman, M., et al. (1993) Detection of HIV-1 distribution in different blood fractions by two nucleic acid amplification assays. AIDS Res. Hum. Retroviruses 9, 259–265.PubMedGoogle Scholar
  68. 68.
    de Baar, M. P., van de Schoot, A. M., Goudsmit, J., et al. (1999) Design and evaluation of a human immunodeficiency virus type 1 RNA assay using nucleic acid sequences-based amplification technology able to quantify both group M and O viruses by using the terminal repeat as target. J. Clin. Microbiol. 37, 1813–1818.PubMedGoogle Scholar
  69. 69.
    Romano, J. W., Shurtliff, R. N., Sarngadharan, M. G., and Pal, R. (1995) Detection of HIV-1 infection in vitro using NASBA: an isothermal RNA amplification technique. J. Virol. Meth. 54, 109–119.CrossRefGoogle Scholar
  70. 70.
    Romano, J. W., Shurtliff, R. N., Grace, M., et al. (2001) Macrophage-derived chemokine gene expression in human and macaque cells: mRNA quantification using NASBA technology. Cytokine 13, 325–333.PubMedCrossRefGoogle Scholar
  71. 71.
    Smits, H. L., van Gemen, B., Schukkink, R., et al. (1995) Application of the NASBA nucleic acid amplification method in the detection of human papillomavirus type 16 E6-E7 transcripts. J. Virol. Meth. 54, 75–81.CrossRefGoogle Scholar
  72. 72.
    Romano, J. W., Williams, K. G., Shurtliff, R. N., Ginocchio, C., and Kaplan, M. (1997) NASBA technology: isothermal RNA amplification in qualitative and quantitative diagnostics. Immunol. Invest. 26, 15–28.PubMedCrossRefGoogle Scholar
  73. 73.
    Chadwick, N., Bruce, I., Davies, M., et al. (1998) A sensitive and robust method for measles RNA detection. J. Virol. Meth. 70, 59–70.CrossRefGoogle Scholar
  74. 74.
    van der Vliet, G. M. E., Schepers, P., Schukkink, R. A. F., van Gemen, B., and Klatser, P. R. (1994) Assessment of Mycobacterial Viability by RNA Amplification. Antimicrob. Agents Chemother. 38, 1959–1965.PubMedGoogle Scholar
  75. 75.
    van der Vliet, G., Schukkink, R. A. F., van Gemen, B., Schepers, P., and Klatser, P. R. (1993) Nucleic Acid Sequence-Based Amplification (NASBA) for the identification of Mycobacteria. J. Gen. Microbiol. 139, 2423–2429.PubMedGoogle Scholar
  76. 76.
    Schoone, G. J., Oskam, L., Kroon, N. C., Schallig, H. D., and Omar, S. A. (2000) Detection and quantification of plasmodium falciparum in blood samples using quantitative nucleic acid sequence-based amplification. J. Clin. Microbiol. 38, 4072–4075.PubMedGoogle Scholar
  77. 77.
    Leone, G., van Schijndel, H. B., van Gemen, B., and Schoen, C. D. (1997) Direct detection of potato leafroll virus in potato tubers by immunocapture and the isothermal nucleic acid amplification method NASBA. J. Virol. Meth. 66, 19–27.CrossRefGoogle Scholar
  78. 78.
    Romano, J.W., Shurtliff, R. N., Dobratz, E., et al. (2000) Quantitative evaluation of simian immunodeficiency virus infection using NASBA technology. J. Virol. Meth. 86, 61–70.CrossRefGoogle Scholar
  79. 79.
    Mainka, B. Fuss, H. Geiger, Höfelmayr, H., and M. H. Wolff (1998) Characterization of viremia at different stages of varicella-zoster virus infection. J. Med. Virol. 56, 91–98.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Birgit Deiman
    • 1
  • Pierre van Aarle
  • Peter Sillekens
  1. 1.Organon TeknikaBoxtelThe Netherlands

Personalised recommendations