Molecular Biotechnology

, Volume 18, Issue 3, pp 213–232 | Cite as

Pathophysiological mechanisms of asthma

Application of cell and molecular biology techniques


Asthma is a common increasing and relapsing disease that is associated with genetic and environmental factors such as respiratory viruses and allergens. It causes significant morbidity and mortality. The changes occurring in the airways consist of a chronic eosinophilic and lymphocytic inflammation, together with epithelial and structural remodeling and proliferation, and altered matrix proteins, which underlie airway wall narrowing and bronchial hyperresponsiveness (BHR). Several inflammatory mediators released from inflammatory cells such as histamine and cysteinyl-leukotrienes induce bronchoconstriction, mucus production, plasma exudation, and BHR. Increased expression of T-helper 2 (Th2)-derived cytokines such as interleukin-4 and 5 (IL-4,5) have been observed in the airway mucosa, and these may cause IgE production and terminal differentiation of eosinophils. Chemoattractant cytokines (chemokines) such as eotaxin may be responsible for the chemoattraction of eosinophils to the airways. The initiating events are unclear but may be genetically determined and may be linked to the development of a Th2-skewed allergen-specific immunological memory. The use of molecular biology techniques on tissues obtained from asthmatics is increasing our understanding of the pathophysiology of asthma. With the application of functional genomics and the ability to transfer or delete genes, important pathyways underlying the cause if asthma will be unraveled. The important outcome of this is that new preventive and curative treatments may ensue.

Index Entries

Asthma cytokines bronchial hyperresponsiveness T-cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    British Thoracic Society. 1993. Guidelines for the management of asthma; a summary. Br. Med. J. 306, 776–782.Google Scholar
  2. 2.
    Anonymous 1998. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The international Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Lancet 351, 1225–1232.Google Scholar
  3. 3.
    Anonymous 1996. Variations in the prevalence of respiratory symptoms, self-reported asthma attacks, and use of asthma medication in the European community Respiratory Health Survey (ECRHS). Eur. Respir. J. 9, 687–695.Google Scholar
  4. 4.
    Kaur, B., Anderson, H. R., Austin, J., et al. 1998. Prevalence of asthma symptoms, diagnosis, and treatment in 12–14 year old children across Great Britain (international study of asthma and allergies in childhood, ISAAC UK). BMJ. 316, 118–124.PubMedGoogle Scholar
  5. 5.
    Martinez, F. D., Morgan, W. J., Wright, A. L., Holberg, C. J., and Taussig, L. M. 1988. Dimished lung function asa predisposing factor for wheezing respiratory illness in infants. N. Engl. J. Med. 319, 1112–1117.PubMedCrossRefGoogle Scholar
  6. 6.
    Murray, A. B. and Morrison, B. J. 1992. Effect of passive smoking on asthmatic hildren who have and who have not had atopic dermatitis. Chest 101, 16–18.PubMedGoogle Scholar
  7. 7.
    Andrae, S., Axelson, O., Bjorkstein, B. Fredriksson, M., and Kjellman, N. I. 1988. Symptoms of bronchial hyperractivity and asthma in relation to environmental factors. Arch. Dis. Child 63, 473–478.PubMedGoogle Scholar
  8. 8.
    Yemaneberhan, H., Bekele, Z., Venn, A., Lewis, S., Parry, E., and Britton, J. 1997. Prevalence of wheeze and asthma and relationto atopy in urban and rural Ethiopia. Lancet 350, 85–90.PubMedGoogle Scholar
  9. 9.
    Shaheen, S. O., Aaby, P., Hall, A. J., et al. 1996. Meales and atopy in Guinea-Bissau. Lancet 347, 1792–1796.PubMedGoogle Scholar
  10. 10.
    Shirakawa, T., Enomoto, T., Shimazu, S., and Hopkin, J. M. 1997. The inverse association between tuberculin responses and atopic disorder. Science 275, 77–79.PubMedGoogle Scholar
  11. 11.
    Demissie, K., Ernst, P., Gray Donald, K. and Joseph, L. 1996. Usual dietary salt intake and asthma in children: a case-control study. Thorax 51, 59–63.PubMedGoogle Scholar
  12. 12.
    Keating, G., Mitchell, E. A., Jackson, R., Beaglehole, R., and Rea, H. 1984. Trends in sales of drugs for asthma in New Zealand, Australia, and the United Kingdom, 1975–81. Br. Med. J. Clin. Res. Ed. 289, 348–351.PubMedGoogle Scholar
  13. 13.
    Mullally, D. I., Howard, W. A., Hubbard, T. J., Grauman, J. S., and Cohen, S. G. 1984. Increased hospitalizations for asthma among children the Washington, D.C. area during 1961–1981. Ann. Allergy 53, 15–19.PubMedGoogle Scholar
  14. 14.
    Anderson, H. R., Bailey, P., and West, S. 1980. Trend in the hospital care of acute childhood asthma 1970–8: a regional study. Br. Med. J. 281, 1191–1194.PubMedGoogle Scholar
  15. 15.
    Sears, M. R. and Rea, H. H. 1987. Patients at risk of dying of asthma: New Zealand experience. J. Allergy Clin. Immunol. 80, 477–481.PubMedGoogle Scholar
  16. 16.
    Johnson, A. J., Nunn, A. J., Somner, A. R., Stableforth, D. E., and Stewart, C. J. 1984. Circumstances of death from asthma. Br. Med. J. Clin. Res. Ed. 288, 1870–1872.PubMedGoogle Scholar
  17. 17.
    Rea, H. H., Scragg, R., Jakcson, R., Beaglehold, R. Fenwick, J., and Sutherland, D. C. 1986. A case-control study of deaths from asthma. Thorax 41, 833–839.PubMedGoogle Scholar
  18. 18.
    Sear, M. R., Rea, H. H., Fenwick, J. et al. 1986. Deaths from asthma in New Zealand. Arch. Dis. Child. 61, 6–10.Google Scholar
  19. 19.
    Crane, J., Pearce, N., and Flatt, A. E. A. 1989. Prescribed fenoterol and death from asthma in New Zealand, 1981–83: case-control study. Lancet i, 917–922.Google Scholar
  20. 20.
    Mcnicol, K. N., Macnicol, K. N., and Williams, H. B. 1973. Spectrum of asthma in children. I. Clinical and physiological components. Br. Med. J. 4, 7–11.PubMedGoogle Scholar
  21. 21.
    Williams, H. and Mcnicol, K. N. 1969. Prevalence, natural history, and relationship of wheezy bronchitis and asthma in children. An epidemiological study. Br. Med. J. 4, 321–325.PubMedGoogle Scholar
  22. 22.
    Strachan, D. P., Butland, B. K., and Anderson, H. R. 1996. Incidence and prognosis of asthma and wheezing illness from early childhood to age 33 in a national British cohort. BMJ. 312, 1195–1199.PubMedGoogle Scholar
  23. 23.
    Roorda, R. J., Gerritsen, J., van Aalderen, W. M. et al. 1993. Risk factors for the persistence of respiratory symptoms in childhood asthma. Am. Rev. Respir, Dis. 148, 1490–1495.Google Scholar
  24. 24.
    Martin, A. J., Landau, L. I., and Phelan, P. D. 1982. Asthma from childhood at age 21: the patient and his disease. Br. Med. J. Clin. Res. Ed. 284, 380–382.PubMedGoogle Scholar
  25. 25.
    Peat, J. K., Woolcock, A. J., and Cullen, K. 1987. Rate of decline of lung fuction in subjects with asthma. Eur. J. Respir. Dis. 70, 171–179.PubMedGoogle Scholar
  26. 26.
    Lange, P., Parner, J., Vestbo, J., Schnohr, P., and Jensen, G. 1998. A 15-year follow-up study of ventilatory function in adults with asthma. N. Eng. J. Med. 339, 1194–2000Google Scholar
  27. 27.
    Finucane, K. E., Greville, H. W., and Brown, P. J. 1985. Irreversible airflow obstruction. Evolution in asthma. Med. J. Aust. 142, 602–604.PubMedGoogle Scholar
  28. 28.
    Humbert, M., Durham, S. R., Ying, S. et al. 1996. IL-4 and IL-5 mRNA and protein in bronchial biopsies from patients with atopic and nonatopic asthma; evidence against “intrinsic” asthma being a distinct immunopathologic entity. Am. J. Respir. Cirt. Care Med. 154, 1497–1504.Google Scholar
  29. 29.
    Cowburn, A. S., Sladek, K., Soja, J., et al. 1998. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J. Clin. Invest. 101, 834–846.PubMedGoogle Scholar
  30. 30.
    Bousquet, J., Chanez, P., Lacoste, J. Y. et al. 1990. Eosinophilic inflammation in asthma. N. Engl. J. Med. 323, 1033–1039.PubMedCrossRefGoogle Scholar
  31. 31.
    Djukanovic, R., Wilson, J. W., Britten, K. M. et al. 1990. Quantitation of most cells and eosinophils in the bronchial mucosa of symptomatic atopic asthmatics and healthy control subjects using immunohistochemistry. Am. Rev. Respir. Dis. 142, 863–871.PubMedGoogle Scholar
  32. 32.
    Laitinen, L. A., Heino, M., Laitinen, A., Kava, T., and Haahtela, T. 1985. Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am. Rev. Respir. Dis. 131, 599–606.PubMedGoogle Scholar
  33. 33.
    Laitinen, L. A., Laitinen, A., and Haahtela, T. 1993. Airway mucosal inflammation even in patients with newly diagnosed asthma. Am. Rev. Respir. Dis. 147, 697–704.PubMedGoogle Scholar
  34. 34.
    Azzawi, M., Bradley, B., Jeffery, P. K., et al. 1990. Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma. Am. Rev. Respir. Dis. 142, 1407–1413.PubMedGoogle Scholar
  35. 35.
    Poston, R., Chanez, P., Lacoste, J. Y., Litchfield, P., Lee, T. H., and Bousquet, J. 1992. Immunohistochemical characterization of the cellular infiltration of asthmatic bronchi. Am. Rev. Respir. Dis. 145, 918–921.PubMedGoogle Scholar
  36. 36.
    Flint, K. C., Leung, K. B. P., Huspith, B. N., Brostoff, J., Pearce, F. L., and Johnson, N. M., 1985. Bronchoalveolar mast cells in extrinsic asthma: mechanism for the initiation of antigen specific bronchoconstriction. Br. Med. J. 291, 923–927.Google Scholar
  37. 37.
    Viksman, M. Y., Liu, M. C., Bickel, C. A., Schleimer, R. P., and Bochner, B. S. 1997. Phenotypic analysis of alveolar macrophages and monocytes in allergic airway inflammation. I. Evidence for activation of alveolar macrophages, but not peripheral blood monocytes, in subjects with allergic rhinitis and asthma. Am. J. Respir. Crit. Care Med. 155, 858–863.PubMedGoogle Scholar
  38. 38.
    Kraft, M., Djukanovic, R., Wilson, S., Holgate, S. T., and Martin, R. J. 1996. Alveolar tissue inflammation in asthma. Am. J. Respir. Crit. Care Med. 154, 1505–1510.PubMedGoogle Scholar
  39. 39.
    Wenzel, S. E., Szefler, S. J., Leung, D. Y. M., Rex, M. D. and Martin, R. J. 1997. Bronchoscopic evaluation of severe asthma: persistent inflammation associated with high dose glucocorticoids. Amer. J. Respir. Crit. Care Med. 156, 737–743.Google Scholar
  40. 40.
    Jatakanon, A., Mohamed, J. B., Lim, S., Maziak, W., Chung, K. F. and Barnes, P. J. 1998. Neutrophils may contribute to the pathogenesis of airway inflammation in steroid dependent intractable asthma. Amer. J. Respir Crit. Care Med. 157, A875.Google Scholar
  41. 41.
    Redington, A. E. and Howarth, P. H. 1997. Airway wall remodelling in asthma [editorial]. Thorax 52, 310–312.PubMedGoogle Scholar
  42. 42.
    Brewster, C. E. P., Howarth, P. H., Djukanovic, R., Wilson, J. Holgate, S. T., and Roche, W. R. 1990. Myofibroblasts and subepithelial fibrosis in bronchial ‘asthma.’ Am. J. Resp. Cell Mol. Biol. 3, 507–511.Google Scholar
  43. 43.
    Roche, W. R., Bealsey, R. Williams, J. H., and Holgate, S. T. 1989. Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1, 520–524.PubMedGoogle Scholar
  44. 44.
    Jeffery, P. K., Wardlaw, A. J., Nelson, F. C., Collins, J. V., and Kay, A. B. 1989. Bronchial biopsies in asthma: an ultrastructural, quantiative study and correlation with hyperractivity. Am. Rev. Respir. Dis. 140, 1745–1753.PubMedGoogle Scholar
  45. 45.
    Glynn, A. A. and Michaels, L. 1960. Bronchial biopsy in chronic bronchitis and asthma. Thorax 15, 142–153.Google Scholar
  46. 46.
    Dunnill, M. S., Massarella, G. R. and Anderson, J. A. 1969. A Comparison of the quantitative anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bronchitis, and in emphysema. Thorax 24, 176–1790.PubMedGoogle Scholar
  47. 47.
    Takizawa, T. and Thurlbeck, W. M. 1971. Muscle and mucous gland size in the major bronchi of patients with chronic bronchitis, asthma, and asthmatic bronchitis. Am. Rev. Respir. Dis. 104, 331–336.PubMedGoogle Scholar
  48. 48.
    Heard, B. E. and Hossian, S. 1972. Hyperplasia of bronchial muscle in asthma. J. Pathol. 110, 319–331.Google Scholar
  49. 49.
    Hossain, S. 1973. Quantitative measurement of bronchial muscle in men with asthma. Am. Rev. Respir. Dis. 107, 99–109.PubMedGoogle Scholar
  50. 50.
    Ebina, M., Yaegashi, H., Chiba, R., Takahashi, T., Motomiya, M, and Tanemura, M. 1990. Hyperractive site in the airway tree of asthmatic patients revealed by thickening of bronchial muscles. A morphometric study. Am. Rev. Respir. Dis. 141, 1327–1332.PubMedGoogle Scholar
  51. 51.
    Ebina, M. Takahashi, T., Chiba, T., and Motomiya, M. Cellular hypertrophy and hyperplasia of airway smooth muscle underlying bronchial asthma. Am. Rev. Resp. Dis. 148, 720–726. 1993.PubMedGoogle Scholar
  52. 52.
    Li, X. and Wilson, J. W. 1997. Increased vascularity of the bronchial mucosa in mild asthma. Am. J. Respir. Cirt. Care Med. 156, 229–233.Google Scholar
  53. 53.
    James, A. L., Pare, P. D., and Hogg, J. C. 1989. The mechanics of airway narrowing in asthma. Am. Rev. Respir. Dis. 139, 242–246.PubMedGoogle Scholar
  54. 54.
    Moreno, R. H., Hogg, J. C., and Pare, P. D. 1986. Mechanics of airway narrowing. Am. Rev. Respir. Dis. 133, 1171–1180.PubMedGoogle Scholar
  55. 55.
    John, M., Au, B. T., Jose, P. J. et al. 1998. Expression and release of interleukin-8 by human airway smooth muscle cells: inhibition by Th-2 cytokines and corticosteroids. Am. J. Respir. Cell Mol. Biol. 18, 84–90.PubMedGoogle Scholar
  56. 56.
    John, M., Hirst, S. J., Jose, P. J. et al. 1997. Human airway smooth muscle cells express and release RANTES in response to Th-1 cytokines: regulation by Th-2 cytokines and corticosteroids. J. Immunol. 158, 1841–1847.PubMedGoogle Scholar
  57. 57.
    Saunders, M. A., Mitchell, J. A., Seldon, P. M. et al. 1997. Release of granulocyte-macrophage colony stimulating factor by human cultured airway smooth muscle cells: suppression by dexamethasone. Br. J. Pharmacol. 120, 545–546.PubMedGoogle Scholar
  58. 58.
    Chung, K. F. (2000) Airway smooth muscle cells; contributing to and regulating airway mucosal inflammation? Eur. Respir J. 15, 961–968.PubMedGoogle Scholar
  59. 59.
    Hamid, Q., Azzawi, M., Ying, S., et al. 1991. Expression of mRNA for interleukins in mucosal bronchial biopsies from asthma. J. Clin. Invest. 87, 1541–1546.PubMedGoogle Scholar
  60. 60.
    Robinson, D. S., Hamid, Q. Ying, S. et al. 1992. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. Med. 326, 298–304.CrossRefGoogle Scholar
  61. 61.
    Yasruel, Z., Humbert, M., Kotsimbos, T. C., et al. 1997. Membrane-bound and soluble alpha IL-5 receptor mRNA in the bronchial mucosa of atopic and nonatopic asthmatics. Am. J. Respir. Crit. Care Med. 155, 1413–1418.PubMedGoogle Scholar
  62. 62.
    Minshall, E., Chakir, J., Laviolette, M. et al. (2000) IL-11 expression is increased in severe asthma: association with epithelial cells and eosinophils. J. Allergy Clin Immunol. 105, 232–238.PubMedGoogle Scholar
  63. 63.
    Shimbara, A., Chistodoulopoulos, P., Soussi-Gounni, A. (2000) IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J. Allergy Clin. Immunol. 105, 108–115.PubMedGoogle Scholar
  64. 64.
    Humber, M., Durham, S. R., Kimmitt, P. 1997. Elevated expression of messenger ribonucleic acid encoding IL-13 in the bronchial mucosa of atopic and nonatopic subjects with asthma. J. Allergy Clin. Immunol. 99, 657–665.Google Scholar
  65. 65.
    Kroegel, C., Julius, P., Matthys, H., Virchow, J. C. Jr., and Luttmann, W. 1996. Endobronchial secretion of interleukin-13 following local allergen challenge in atopic asthma: relationship to interleukin-4 and eosinophil counts. Eur. Respir. J. 9, 899–904.PubMedGoogle Scholar
  66. 66.
    Chung, K. F. and Barnes, P. J. 1999. Cytokines in asthma. Thorax 54, 825–857.PubMedGoogle Scholar
  67. 67.
    Clutterbuck, E. J., Hirst, E. M., and Sanderson, C. J. Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6 and GM-CSF. Blood 73, 1504–1512. 1989.PubMedGoogle Scholar
  68. 68.
    Lopez, A. F., Sanderson, C. J., Gamble, J. R., Campbell, H. D., Young, I. G. and Vadas, M. A. 1988. Recombinant human interleukin 5 is a selective activator of human eosinophil function. J. Exp. Med. 167, 219–224.PubMedGoogle Scholar
  69. 69.
    Yamaguchi, Y., Hayashi, Y., Sugama, Y. et al. 1988. Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil factor. J. Exp. Med. 167, 1737–1740.PubMedGoogle Scholar
  70. 70.
    Le Gros, G., Ben-Sasson, S. Z., Seder, R. A., Finkelman, F. D. and Paul, W. E. 1990. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J. Exp. Med. 172, 921–929.PubMedGoogle Scholar
  71. 71.
    Swain, S. L., Weinberg, A. D., English, M. and Huston, G. 1990 IL-4 directs the development of Th2-like helper effectors. J. Immunol. 145, 3796–3806.PubMedGoogle Scholar
  72. 72.
    Park, C. S., Choi, Y. S., Ki, S. Y. et al. 1998. Granulocyte macrophage colony-stimulating factor is the main cytokine enhancing survival of eosinophils in asthmatic airways. Eur. Respir. J. 12, 872–878.PubMedGoogle Scholar
  73. 73.
    Sousa, A. R., Poston, R. N. Lane, S. J., Narhosteen, J. A. and Lee, T. H. 1993. Detection of GM-CSF in asthmatic bronchial epithelium and decrease by inhaled corticosteroids. Am. Rev. Respir. Dis. 147, 1557–1561.PubMedGoogle Scholar
  74. 74.
    Broide, D. H. and Firestein, G. S. 1991. Endobronchial allergen challenge: demonstration of cellular source of granulocyte macrophage colony-stimulating factor by in situ hybridization. J. Clin. Invest. 88, 1048–1053.PubMedGoogle Scholar
  75. 75.
    Fujisawa, T., Abu-Ghazaleh, R., Kita, H., Gleich, C. J. 1990. Regulatory effect of cytokines on eosinophil degranulation. J. Immunol. 144, 642–646.PubMedGoogle Scholar
  76. 76.
    Tai, P. C. and Spry, C. J. 1990. The effects of recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 on the secretory capacity of human blood eosinophils. Clin. Exp. Immunol. 80, 426–434.PubMedCrossRefGoogle Scholar
  77. 77.
    Gilberstein, D. S., Owen, W. F., Gasson, J. C. et al. 1986. Enhancement of human eosinophil cytotoxicity and leukotriene synthesis by biosynthetic (recombinant) pneulocyte-macrophage colony-stimulating factor. J. Immunol. 137, 3290–3294.Google Scholar
  78. 78.
    Berkman, N., Krishnan, V. L. Gilbey, T. et al. 1996. Expression of RANTES mRNA and protein in airways of patients with mild asthma. Am. J. Resp. Crit. Care Med. 154, 1804–1811.PubMedGoogle Scholar
  79. 79.
    Ying, S. Robinson, D. S. Meng, Q. et al. 1997. Enhanced expression of eotaxin and CCR3 mRNA and protein in atopic asthma. Association with airway hyperresponsiveness and predominant co-localization of eotaxin mRNA to bronchial epithelial and endothelial cells. Eur. J. Immunol. 27, 3507–3516.PubMedGoogle Scholar
  80. 80.
    John, M. Lim, S., Seybold, J. et al. 1998. Inhaled corticosteroids increase interleukin-10 but reduce macrophage inflammatory protein-1a, granulocyte-macrophage colony-stimulating factor and interferon-Y release from alveolar macrophages in asthma. Amer. J. Respir Cir. Care Med. 157, 256–262.Google Scholar
  81. 81.
    Hallsworth, M. P., Soh, C. P. C., Lane, S. J., Arm, J. P. and Lee, T. H. 1994. Selective enhancement of GM-CSF, TNF-α, IL-1β and IL-8 production by monocytes and macrophages of asthmatic subjects. Eur. Respir. J. 7, 1096–1102.PubMedGoogle Scholar
  82. 82.
    Cembrzynska-Norvak, M., Szklarz, E., Inglot, A. D., and Teodorczyk-Injeyan, J. A. Elevated release of TNF-α and interferon-gamma by bronchoalveolar leukocytes from patients with bronchial asthma. Am. Rev. Resp. Dis. 147, 291–295. 1993.Google Scholar
  83. 83.
    Broide, D. H. and Firestein, G. S. 1991. Endobronchial allergen challenge in asthma. Demonstration of cellular source of granulocyte-macrophage colony stimulating factor by in situ hybridization. J. Clin. Invest. 88, 1048–1053.PubMedGoogle Scholar
  84. 84.
    Gosset, P., Tsicopoulos, A., Wallaert, B. et al. 1991. Increased secretion by tumor necrosis factor α and interleukin 6 by alveolar macrophages consecutive to the development of the late asthmatic reaction. J. Allergy Clin. Immunol. 88, 561–571.PubMedGoogle Scholar
  85. 85.
    Broide, D. H., Lotz, M., Cuomo, A. J., Coburn, D. A., Federman, E. C., and Wasserman, S. I. 1992. Cytokines in symptomatic asthmatic airways. J. Allergy Clin. Immunol. 89, 958–967.PubMedGoogle Scholar
  86. 86.
    Spiteri, M., Knight, R. A., Jeremy, J. Y., Barnes, P. J. and Chung, K. F. 1994. Alveolar macrophage-induced suppression of T-cell hyperresponsiveness in bronchial asthma is reversed by allergen exposure. Eur. Resp. J. 7, 1431–1438.Google Scholar
  87. 87.
    Aubus, P., Cosso, B., Godard, P., Miche, F. B., and Clot, J. 1984. Decreased suppressors cell activity of alveolar macrophages in bronchial athma. Am. Rev. Respir. Dis. 130, 875–878.Google Scholar
  88. 88.
    Sousa, A. R., Lane, S. J., Nakhosteen, J. A., Lee, T. H., and Poston, R. N. 1996. Expression of interleukin-1 beta(IL-1beta) and interleukin-1 receptor antagonist (IL-1ra) on asthmatic bronchial epithelium. Am. J. Respir. Cirt. Care Med. 154, 1061–1066.Google Scholar
  89. 89.
    Fischer, H. G., Frosch, S., Reske, K., and Reske-Kunz, A. B. 1988. Granulocyte-macrophage colony-stimulating factor activates macrophages derived from bone marrow cultures to synthesis of MHC class II molecules and to augmented antigen presentation function. J. Immunol. 141, 3882–3888.PubMedGoogle Scholar
  90. 90.
    Chang, T. L., Shea, C. H., Urioste, S., Thompson, R. C., Boom, W. H., and Abbas, A. K. 1990. Heretogeneity of helper/inducer T lymphocytes: lymphokine production and lymphokine responsiveness. J. Immunol. 145, 2803–2808.PubMedGoogle Scholar
  91. 91.
    Bradding P., Robert, J. A., Britten, K. M., 1994. Interleukin-4,-5 and -6 and tumor necrosts factor-∞ in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. Am. J. Respir. Cell Mol. Biol. 10, 471–480.PubMedGoogle Scholar
  92. 92.
    Schleimer, R. P., Sterbinsky, C. A., Kaiser, C. A., et al. 1992. Interleukin-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium: association with expression of VCAM-1. J. Immunol. 148, 1086–1092.PubMedGoogle Scholar
  93. 93.
    Tosi, M. F., Stark, J. M., Smith, C. W., Hamedani, A., Gruenert, D. C., and Infeld, M. D. 1992. Induction of ICAM-1 expression on human airway epithelial cells by inflammatory cytokines effects on neutrophil-epithelial cell adhesion. Am. J. Respir. Cell Mol. Bio. 7, 214–221.Google Scholar
  94. 94.
    Montefort, S., Gratziou, C., Goulding, D., et al. 1994. Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways. J. Clin. Invest. 93, 1411–1421.PubMedGoogle Scholar
  95. 95.
    Gosset, P., Tillie Leblond, I., Janin, A., et al. 1995. Expression of E-selectin, ICAM-1 and VCAM-1 on bronchial biopsies from allergic and non-allergic asthmatic patients. Int. Arch. Allergy Immunol. 106, 69–77.PubMedCrossRefGoogle Scholar
  96. 96.
    Ohkawara, Y., Yamauchi, K., Maruyama, N., et al. 1995. In situ expression of the cell adhesion molecules in bronchial tissues from asthmatics with air flow limitation: in vivo evidence of VCAM-1/VLA-4 interaction in selective eosinophil infiltration. Am. J. Respir. Cell Mol. Biol. 12, 4–12.PubMedGoogle Scholar
  97. 97.
    Fukuda, T., Fukushima, Y., Numao, T., et al. 1996. Role of interleukin-4 and vascular cell adhesion molecule-1 in selective eosinophil migration into the airways in allergic asthma. Am. J. Respir. Cell Mol. Biol. 14, 84–94.PubMedGoogle Scholar
  98. 98.
    Bentley, A. M., Durham, S. R., Robinson, D. S., et al. 1993. Expression of endothelial and leukocyte adhesion molecules interacellular adhesion molecule-1, E-selectin, and vascular cell adhesion molecule-1 in the bronchial mucosa in steady-state and allergen-induced asthma. J. Allergy Clin. Immunol. 92, 857–868.PubMedGoogle Scholar
  99. 99.
    Vignola, A. M., Campbell, P., Chanez, et al. 1993. HLA-DR and ICAM-1 expression on bronchial epithelial cells in asthma and chronic bronchitis. Am. Rev. Respir. Dis. 148, 689–694.PubMedGoogle Scholar
  100. 100.
    Abraham, W. M., Sielczak, M. W., Ahmed, A., et al. 1994. Alpha 4-integrins mediate antigen-induced late bronchial responses and prolonged airway hyper-responsiveness in sheep. J. Clin. Invest. 93, 776–787.PubMedCrossRefGoogle Scholar
  101. 101.
    Hisada, T., Hellewell, P. Teixeira, M. M., et al. (1999) α4-integrin dependent eotaxin-induction of bronchial hyperresponsiveness and eosinophil migration in IL-5 transgenic mice. Amer. J. Respir. Cell Mol. Biol. 20, 992–1000.Google Scholar
  102. 102.
    Sanderson, C. J., Warren, D. J., and Strath, M. 1985. Identification of a lumphokine that stimulates eosinophil differentiation in vitro. Its relationship to interleukin 3, and functional properties of eosinophils produced in cultures. J. Exp. Med. 162, 60–74.PubMedGoogle Scholar
  103. 103.
    Jose, P. J., Griffiths-Johnson, D. A., Collins, P. D., et al. 1994. Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J. Exp. Med. 179, 881–887.PubMedGoogle Scholar
  104. 104.
    Ponath, P. D., Qin, S., Post, T. W., et al. 1996. Molecular cloning and characterization of a human eotaxin receptor expressed selectivity on eosinophils. J. Exp. Med. 183, 2437–2448.PubMedGoogle Scholar
  105. 105.
    Collins, P. D., Griffiths-Johnson, D. A., Jose, P. J., Williams, T. J., and Marleau, S. 1995. Co-operation between interleukin-5 and the chemokine, eotaxin, to induce eosinophil accumulation in vivo. J. Exp. Med. 182, 1169–1174.PubMedGoogle Scholar
  106. 106.
    Rothenberg, M. E., Owen, W. F. J., and Siberstein, D. S. 1988. Human eosinophils have prolonged survival, enhanced functional properties and become hypodense when exposed to human interluekin. J. Clin. Invest. 81, 1986–1992.PubMedGoogle Scholar
  107. 107.
    Mogbel, R., Hamid, Q., Ying, S., et al. 1991. Expression of mRNA and immunoractivity for the granulocyte/macrophage colony-stimulating factor (GM-CSF) in activated human eosinophils. J. Exp. Med. 174, 749–752.Google Scholar
  108. 108.
    Tosi, M. F., Stark, J. M., Smith, W. C., Hamedani, A., Gruenert, D. C., and Infeld, M. D. 1992. Induction of ICAM-1 expression on human airway epithelial cells by inflammatory cytokines: Effects on neutrophil-epithelial cell adhesion. American Journal Respiratory Cell and Molecular Biology. 7, 214–221.Google Scholar
  109. 109.
    Hisada, T., Hellewell, P. G., Teixeira, M. M., et al. 1999. alphar4 integrin-dependent eotaxin induction of bronchial hyperresponsiveness and eosinophil migration in interleukin-5 transgenic mice. Am. J. Respir. Cell Mol. Biol. 20, 992–1000.PubMedGoogle Scholar
  110. 110.
    Demoly, P., Basset-Seguin, N., Chanez, P., et al. 1992. C-fos proto-oncogene expression in bronchial biopsies of asthmatics. Am. J. Resp. Cell Mol Biol. 7, 128–133.Google Scholar
  111. 111.
    Adcock, I. M., Lane, S. J., Brown, C. R., Lee, T. W., and Barnes, P. J. 1995. Abnormal glucocorticoid receptor-activator protein 1 interaction in steroid-resistant asthma. J. Exp. Med. 182, 1951–1958.PubMedGoogle Scholar
  112. 112.
    Hart, L. A., Krishnan, V. L., Adcock, I. M., Barnes, P. J., and Chung, K. F. 1998. Activation and localization of transcription factor, nuclear factor-kB, in asthma. Amer. J. Respir. Crit. Care Med. 158, 1585–1592.Google Scholar
  113. 113.
    Hamid, Q., Springall, D. R., Riveros-Moreno, V. et al. 1993. Induction of nitric oxide synthase in asthma. Lancet 342, 1510–1514.PubMedGoogle Scholar
  114. 114.
    Shannon, V. R., Chanez, P., Bousquet, J., and Holtzman, M. J. 1993. Histochemical evidence for induction of arachidonate 15-lipoxygenase in airway disease. Am. Rev. Resp. Dis. 147, 1024–1028.PubMedGoogle Scholar
  115. 115.
    Sousa, A. R., Lane, S. J., Nakhosteen, J. A., Yoshimura, T., Lee, T. H., and Poston, R. N. 1994. Increased expression of the monocyte chemoattractant protein-1 in bronchial tissues from asthmatic subjects. Am. J. Resp. Cell Mol. Biol. 10, 142–147.Google Scholar
  116. 116.
    Yang, L., Cohn, L., Zhang, D. H., Homer, R., Ray, A., and Ray, P. 1998. Essential role of nuclear factor kappaB in the induction of eosinophilia in allergic airway inflammation. J. Exp. Med. 188, 1739–1750.PubMedGoogle Scholar
  117. 117.
    Zhang, D. H., Yang, L., and Ray, A. 1998. Differential responsiveness of the IL-5 and IL-4 genes to transcription factor GATA-3. J. Immunol. 161, 3817–3821.PubMedGoogle Scholar
  118. 118.
    Imhof, A. and Wolffe, A. P., 1998. Transcription: gene control by targeted histone acetylation. Curr. Biol. 8, R422–424.PubMedGoogle Scholar
  119. 119.
    Barnes, P. J., Chung, K. F., and Page, C. P. 1998. Inflammatory mediators of asthma: an update. Pharmacol. Rev. 50, 515–596.PubMedGoogle Scholar
  120. 120.
    Davidson, A. B., Lee, T. H., Scanlon, P. D. et al. 1987. Bronchoconstrictor effects of leukotriene E4 in normal and asthmatic subjects. Am. Rev. Respir. Dis. 135, 500–504.Google Scholar
  121. 121.
    Arm, J. P., Spur, B. W., and Lee, T. H. 1988. The effects of inhaled leukotriene E4 on the airway responsiveness to histamine in subjects with asthma and normal subjects. J. Allergy Clin. Immunol. 82, 654–660.PubMedGoogle Scholar
  122. 122.
    Bischoff, S. C., Krieger, M., Brunner, T., and Dahinden, C. A. 1992. Monocyte Chemotactic Protein 1 is a Potent activator of Human Basophils. J. Exp. Med. 175, 1271–1275.PubMedGoogle Scholar
  123. 123.
    Panettieri, R. A., Tan, E. M., Ciocca, V., Luttmann, M. A., Leonard, T. B., and Hay, D. W. 1998. Effects of LTD4 on human airway smooth muscle cell proliferation, matrix expression, and contraction In vitro: differential sensitivity to cysteinyl leukotriene receptor antagonists. Am. J. Respir. Cell Mol. Biol. 19, 453–461.PubMedGoogle Scholar
  124. 124.
    Chung, K. F. 1995. Leukotriene receptor antagonists and biosynthesis inhibitors: potential breakthrough in asthma therapy. Eur. Respir. J. 8, 1203–1213.PubMedGoogle Scholar
  125. 125.
    Spector, S. L., Smith, L. J., and Glass, M. 1994. Effects of six weeks of therapy with oral doses of ICI 204,219, a leukotriene D4 receptor antagonist, in subjects with bronchial asthma. American Journal of Respiratory and Critical Care Medicine 150, 618–623.PubMedGoogle Scholar
  126. 126.
    Noonan, M. J., Chervinsky, P., Brandon, M. et al. 1998. Montelukast, a potent leukotriene receptor antagonist, causes dose-related improvements in chronic asthma. Montelukast Asthma Study Group. Eur. Respir. J. 11, 1232–1239.PubMedGoogle Scholar
  127. 127.
    Roquet, A., Dahlen, B., Kumlin, M. et al. 1997. Combined antagonism of leukotrienes and histamine produces predominant inhibition of allergen-induced early and late phase airway obstruction in asthmatics. Am. J. Respir. Crit. Care Med. 155, 1856–1863.PubMedGoogle Scholar
  128. 128.
    Chung, K. F. 1992. Platelet-activating factor in inflammation and pulmonary disorders. Clin. Sci. 83, 127–138.PubMedGoogle Scholar
  129. 129.
    Kuitert, L. M., Angus, R. M. Barnes, N., et al. Effect of a novel potent platelet-activating factor antagonist, Modipafant, in clinical asthma. Am. J. Resp. Cirt. Care Med. 151, 1331–1335. 1995.Google Scholar
  130. 130.
    Spence, D. P., Johnston, S. L., Calverley, P. M., et al. 1994. The effect of the orally active platelet-activating factor antagonist WEB 2086 in the treatment of asthma. American Journal of Respiratory & Critical Care Medicine 149, 1142–1148.Google Scholar
  131. 131.
    Chung, K. F., Evans, Graf, P. D., and Nadel, J. A. 1985. Modulation of cholinergic neutrotransmission in canine airways by thromboxane-mimetic U 46619. Eur. J. Pharmacol. 117, 373–375.PubMedGoogle Scholar
  132. 132.
    Fuller, R. W., Dixon, C. M.S., Dollery, C. T., and Barnes, P. J. 1986. Prostaglandin D2 potentiates airway responses to histamine and methacholine. Am. Rev. Respir. Dis. 133, 252–254.PubMedGoogle Scholar
  133. 133.
    Walters, E. H., Parrish, R. W., Bevan, C., and Smoth, A. P. 1981. Induction of bronchial hypersensitivity: evidence for a role of prostaglandins. Thorax 36, 571–574.PubMedGoogle Scholar
  134. 134.
    Melillo, E., Woolley, K. L., Manning, P. J., Watson, R. M., and O’Byrne, P. M., 1994. Effect of inhaled PGE2 on exercise-induced bronchoconstriction in asthmatic subjects. Am. J. Respir. Crit. Care Med. 149, 1138–1141.PubMedGoogle Scholar
  135. 135.
    Pavord, I. D., Wong, C. S., Williams, J. and Tattersfield, A. E. 1993. Effect of inhaled prostaglandin E2 on allergen-induced asthma. Am. Rev. Respir. Dis. 148, 87–90.PubMedGoogle Scholar
  136. 136.
    Barnes, P. J., Baraniuk, J. N., and Belvisi, M. G. 1991. Neuropeptides in the respiratory tract. Part 1. Am. Rev. Respir. Dis. 144, 1187–1198.PubMedGoogle Scholar
  137. 137.
    Daniele, R. P, Barnes, P. J., Goetzl, E. J., et al. 1992. NHLBI workshop summaries. Neuroimmune interactions in the lung. Am. Rev. Respir. Dis. 145, 1230–1235.PubMedGoogle Scholar
  138. 138.
    Christiansen, S. C., Proud, D., and Sarnoff, R. B. Elevation of tissue kallikrein and kinin in the airways of asthmatic subjects after endobronchial allergen challenge. Amer. Rev. Resp. Dis. 145, 900–905. 1992.PubMedGoogle Scholar
  139. 139.
    Lui, M. C., Hubbard, W. C., Proud, D. et al. 1991. Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics. Cellular, mediator, and permeability changes. Am. Rev. Respir. Dis. 144, 51–58.Google Scholar
  140. 140.
    Proud, D., Naclerio, R. M., Gwaltney, J. M. and Hendley, J. O. 1990. Kinins are generated in nasal secretions during natural rhinovirus colds. J. Infect. Dis. 161, 120–123.PubMedGoogle Scholar
  141. 141.
    Molimard, M., Martin, C. A., Naline, E., Hirsch, A. and Advenier, C. 1994. Contractile effects of bradykinin on the isolated human small bronchus. Am. J. Respir. Crit. Care Med. 149, 123–127.PubMedGoogle Scholar
  142. 142.
    Berman, A. R., Liu, M. C., Wagner, E. M. and Proud, D. 1996. Dissociation of bradykinin-induced plasma exudation and reactivity in peripheral airways. Am. J. Respir. Crit. Care Med. 154, 418–423.PubMedGoogle Scholar
  143. 143.
    Baker, A. P., Hillegrass, L. M., Holden, D. A. and Smith, W. J. 1977. Effect of kallidin, substance P, and other basic polypeptides on the production of respiratory macromolecules. Am. Rev. Respir Dis. 115, 811–817.PubMedGoogle Scholar
  144. 144.
    Kaufman, M. P., Coleridge, H. M., Coleridge, J. C. G., and Baker, D. G. 1980. Bradykinin stimulates afferent vagal C-fibers in intrapulmonary airways of dogs. J. Appl. Physiol. 48, 511–517.PubMedGoogle Scholar
  145. 145.
    Barnes, P. J. 1986. Asthma as an axon reflex. Lancet i, 242–245.Google Scholar
  146. 146.
    Hay, D. W., Henry, P. J. and Goldie, R. G. 1996. Is endothelin-1 a mediator in asthma? Am. J. Respir. Cirt. Care Med. 154, 1594–1597.Google Scholar
  147. 147.
    Redington, A. E., Springall, D. R., Meng, Q. H. Meng, et al. 1997. Immunoractive endothelin in bronchial biopsy specimens: increased expression in asthma and modulation by corticosteroid therapy. J. Allergy Clin. Immunol. 100, 544–552.PubMedGoogle Scholar
  148. 148.
    Redington, A. E. Springall, D.R., Ghatei, M. A., et al. 1997. Airway endothelin levels in asthma: influence of endobronchial allergen, challenge and maintenance corticosteroid therapy. Euro. Respir. J. 10, 1026–1032.Google Scholar
  149. 149.
    Redington, A. E., Madden, J., Frew, A. J., et al. 1997. Transforming growth factor-beta 1 in asthma. Measurement in bronchoalveolar lavage fluid. Am. J. Respir. Crit. Care Med. 156, 642–647.PubMedGoogle Scholar
  150. 150.
    Minshall, E. M., Leung, D. Y. M., Martin, R. J. 1997. Eosinophil-associated TGFβ1 mRNA expression and airways fibrosis in asthma. Amer. J. Respir. Cell Mol. Biol. 17, 326–333.Google Scholar
  151. 151.
    Kharitonov, S. A., Yates, D., Robbins, R. A., Logan-Sinclair, R., Shinebourne, E. A. and Barnes, P. J. 1994. Increased nitric oxide in exhaled air of asthmatic patients. Lancet 343, 133–135.PubMedGoogle Scholar
  152. 152.
    Kuo, H. P., Liu, S., and Barnes, P. J. 1992. The effect of endogenous nitric oxide on neurogenic plasma exudation in guinea-pig airways. Eur. J. Pharmacol. 221, 385–388.PubMedGoogle Scholar
  153. 153.
    Taylor Robinson, A. W., Phillips, R. S., Severn, A., Moncada, S. and Liew, F. Y. 1993. The role of TH1 and TH2 cells in a rodent malaria infection. Science 260, 1931–1934.PubMedGoogle Scholar
  154. 154.
    Harris, J. R., Magnus, P., Samuelsen, S. O. and Tambs, K. 1997. No evidence for effects of family environment on asthma. A retrospective study of Norwegian twins. Am. J. Respir. Cirt. Care Med. 156, 43–49.Google Scholar
  155. 155.
    Nieminen, M. M., Kaprio, J. and Koskenvuo, M. 1991. A population-based study of bronchial asthma in adult twi pairs. Chest 100, 70–75.PubMedGoogle Scholar
  156. 156.
    Sanford, A. J., Shirakawa, T., Moffatt, M. F., et al. 1993. Localisation of atopy and beta subunit of high-affinity IgE receptor (Fc epsilon RI) on chromosome 11q. Lancet 341, 332–334.Google Scholar
  157. 157.
    Doull, I. J., Lawrence, S., Matson, M. et al. 1996. Allelic association of gene markers on chromosomes 5q and 11q with atopy and bronchial hyppresponsiveness. Am. J. Respir. Crit. Care Med. 153, 1280–1284.PubMedGoogle Scholar
  158. 158.
    Postma, D. S., Bleecker, E. R., Amelung, P. J., et al. 1995. Genetic susceptibility to asthma-bronchial hyperresponsiveness coinherited with amajor gene for atopy. N. Engl. J. Med. 333, 894–900.PubMedGoogle Scholar
  159. 159.
    Marsh, D. G., Neely, J. D., Breazeale, D. R., et al. 1994. Linkage analysis of IL4 and other chromosome 5q31.1. markers and total serum immunoglobulin E concentrations. Science 264, 1152–1156.PubMedGoogle Scholar
  160. 160.
    Walley, A. J., and Cookson, W. O., 1996. Investigation of an interleukin-4 promoter polymorphism for associations with asthma and atopy. J. Med. Genet. 33, 689–692.PubMedCrossRefGoogle Scholar
  161. 161.
    Moffatt, M. F., Hill, M. R., Cornelis, F., et al. 1994. Genetic linkage of T-cell receptor alpha/delta complex to specific IgE responses. Lancet 343, 1597–1600.PubMedGoogle Scholar
  162. 162.
    Hall, P., Wheatley, A., Wilding, P., and Liggett, S. B., 1995. Association of Glu 27 beta-2-adrenoceptor polymorphism with lower airway reactivity in asthmatic subjects Association of Glu 27 beta 2-adrenoceptor polymorphism with lower airway reactivity in asthmatic subjects. Lancet 345, 1213–1214.PubMedGoogle Scholar
  163. 163.
    Daniels, S. E., Bhattacharrya, S., James, A. et al, 1996. A genome-wide search for quantitative trait loci underlying asthma. Nature 383, 247–250.PubMedGoogle Scholar
  164. 164.
    Moffat, M. F. and Cookson, W. O., 1997. Tumor necrosis factor haplotypes asthma. Hum. Mol. Genet. 6, 551–554.Google Scholar
  165. 165.
    Sporik, R., Holgate, S. T., Platts-Mills, T. A. E., Cogswell, J. J. 1990. Exposure to house-dust mite allergen (Der p I) and the development of asthma in childhood. N. Engl. J. Med. 323, 502–507.PubMedCrossRefGoogle Scholar
  166. 166.
    Lau, S., Illi, S., Sommerfeld, C., Niggemann, B., Bergmann, R., von, M. E., and Wahn, U. 2000. Early exposure to house-dust mite and cat allergens and development of childhood asthma; a cohort study. Multicentre Allergy Study Group. Lancet 356, 1392–1397.PubMedGoogle Scholar
  167. 167.
    Holt, P. G., McMenamin, C. and Nelson, D. 1990. Primary sensitisation to inhalant allergens in infancy. Ped. Allergy Immunol. 1, 3–13.Google Scholar
  168. 168.
    Bjorksten, B. 1994. Risk factors in early childhood for the development of atopic diseases. Allergy 49, 400–407.PubMedGoogle Scholar
  169. 169.
    Holt, P. G., and Sly, P. D., 1997. Allergic respiratory disease: strategic targets for primary prevention during childhood. Thorax 52, 1–4.PubMedCrossRefGoogle Scholar
  170. 170.
    Green, J. M. 2000. The B7/CD28/CTLA4 T-cell activation pathway. Implications for inflammatory lung disease. Am. J. Respir. Cell Mol. Biol. 22, 261–264.PubMedGoogle Scholar
  171. 171.
    Lenschow, D. J., Walunas, T. L., and Bluestone, J. A. 1996. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258.PubMedGoogle Scholar
  172. 172.
    Harris, N., Peach, R., Naemura, J., Linsley, P. S., Le Gros, G., and Ronchese, F. 1997. CD80 costimulation is essential for the induction of airway eosinophilia. J. Exp. Med. 185, 177–182.PubMedGoogle Scholar
  173. 173.
    Sur, S., Crotty, T. B., Kephart, G. M., et al. 1993. Sudden-onset fatal asthma: A distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa? Am. Rev. Resp. Dis. 148, 713–719.PubMedGoogle Scholar
  174. 174.
    Johnston, S. L., Pattermore, P. K., Sanderson, G. et al. 1995. Community study of role of viral infections in exacerbations of asthma in 9–11 year old children BMJ. 310, 1225–1229.PubMedGoogle Scholar
  175. 175.
    Grunberg, K., Timmers, M. C., Smit, H. H., et al. 1997. Effect of experimental rhinovirus 16 colds on airway hyperresponsiveness to histamine and interleukin-8 in nasal lavage in asthmatic subjects in vivo. Clin. Exp. Allergy 27, 36–45.PubMedGoogle Scholar
  176. 176.
    Calhoun, W. J., Dick, E. C., Schwartz, L. B., and Busse, W. W. 1994. A common cold virus, rhinovirus 16, potentiates airway inflammation after segmental antigen bronchoprovocation in allergic subjects. J. Clin. Invest. 94, 2200–2208.PubMedGoogle Scholar
  177. 177.
    Zhu, Z., Tang, W., Ray, A. et al. 1996. Rhinovirus stimulation of interleukin-6 in vivo and in vitro: evidence for nuclear fator-kB-dependent transcriptional activation. J. Clin Invest 97, 421–430.PubMedGoogle Scholar
  178. 178.
    Chung, K. F. and Godard, P. 1999. Difficult therapy-resistant asthma: report of a Task Force. Eur. Respir. J in press.Google Scholar
  179. 179.
    Chung, K. F. 1998. Corticosteroid responsiveness and the evolution of asthma. Clin. Exp. Allergy 28 (Suppl) 5, 126–132.Google Scholar
  180. 180.
    Barnes, P. J. and Adcock, I. M. 1995. Steroid resistance in asthma. Q J Med. 88, 455–468.Google Scholar
  181. 181.
    Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.PubMedGoogle Scholar
  182. 182.
    Chee, M., Yang, R., Hubbell, E. et al. 1996. Accessing genetic information with high-density DNA arrays. Science 274, 610–614.PubMedGoogle Scholar
  183. 183.
    Lockhart, D. J., Dong, H., Byrne, M. C., et al. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680.PubMedGoogle Scholar
  184. 184.
    Chung, K. F. and Adcock, I. M. 2000. Asthma: Mechanisms and protocols. Humana Press, New Jersey.Google Scholar
  185. 185.
    Stirling, R. and Chung, K. F. 2000. New approaches to the treatment of allergy and asthma. Eur. Respir. J. 16, 1158–1174.PubMedGoogle Scholar
  186. 186.
    Drazen, J. M., Yandava, C. N., Dube, L. et al. 1999. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat. Genet. 22, 168–170.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  1. 1.National Heart & Lung InstituteImperial CollegeLondonUK

Personalised recommendations