Advertisement

Molecular Biotechnology

, Volume 18, Issue 1, pp 25–33 | Cite as

Biolistic transformation of arbuscular mycorrhizal fungi

Progress and perspectives
Review

Abstract

Gene transfer systems have proved effective for the transformation of a range of organisms for both fundamental and applied studies. Biolistic transformation is a powerful method for the gene transfer into various organisms and tissues that have proved recalcitrant to more conventional means. For fungi, the biolistic approach is particularly effective where protoplasts are difficult to obtain and/or the organisms are difficult to culture. This is particularly applicable to arbuscular mycorrhizal (AM) fungi, being as they are obligate symbionts that can only be propagated in association with intact plants or root explants. Furthermore, these fungi are aseptate and protoplasts cannot be released. Recent advancements in gene transformation systems have enabled the use of biolistic technology to introduce foreign DNA linked to molecular markers into these fungi. In this review we discuss the development of transformation strategies for AM fungi by biolistics and highlight the areas of this technology which require further development for the stable transformation of these elusive organisms.

Index Entries

Arbuscular mycorrhizal fungi symbiosis transformation particle bombardment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, S. E. and Read, D. J. (1997) Mycorrhizal Symbiosis. Second Edition, Academic Press.Google Scholar
  2. 2.
    Pirozynski, K. A. and Malloch, D. W. (1975) The origin of land plants: A matter of mycotrophism. Biosystems 6, 153–164.PubMedCrossRefGoogle Scholar
  3. 3.
    Pirozynski, K. A. and Dalpe, Y. (1989) Geological history of the Glomaceae with particular reference to mycorrhizal symbiosis. Symbiosis 7, 1–36.Google Scholar
  4. 4.
    Redecker, D., Kodner, R., and Graham, L. E. (2000) Glomalean fungi from the ordovacian. Science 289, 1920,1921.PubMedCrossRefGoogle Scholar
  5. 5.
    Remy, W., Taylor, T. N., Hass, H. et al. (1994) Four hundred million year old vesicular arbuscular mycorrhizae. Proc. Natl. Acad. Sci. USA 91, 11,841–11,843.CrossRefGoogle Scholar
  6. 6.
    Simon, L., Bousquet, J., Levesque, R. C., et al. (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular plants. Nature 363, 67–69.CrossRefGoogle Scholar
  7. 7.
    Taylor, T. N., Remy, W., Hass, H., et al. (1995) Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87, 560–573.CrossRefGoogle Scholar
  8. 8.
    Hooker, J. E., Jaizme-Vega, M., and Atkinson, D. (1994). Biocontrol of plant pathogens using arbuscular mycorrhizal fungi, in Impact of Arbuscular Mycorrhizal Fungi on Sustainable Agriculture and Natural Ecosystems (Gianinazzi, S. and Schuepp, H., eds.), Birkhauser-Verlag, Switzerland, pp. 191–200.Google Scholar
  9. 9.
    Marschner, H. and Dell, B. (1994) Nutrient uptake in mycorrhizal symbiosis. Plant & Soil 159, 89–102.Google Scholar
  10. 10.
    Newsham, K. K., Fitter A. H., and Watterson, A. R. (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J. Ecol. 83, 991–1000.CrossRefGoogle Scholar
  11. 11.
    Ricken, B. and Hofner, W. (1996) Effect of arbuscular mycorrhizal fungi (AMF) on heavy-metal tolerance of Alfafa (Medicago sativa L.) and oat (Avena sativa L.) on a sewage sludge treated soil. Zeit. Planzen. Boken. 159, 189–194.Google Scholar
  12. 12.
    Subramanian, K. S., Charest, C., Dwyer, L. M., et al. (1995) Arbuscular mycorrhizas and water relations in Maize under drought stress at Tasseling. New Phytol. 129, 643–650.CrossRefGoogle Scholar
  13. 13.
    Vonreichenbach, H. G. and Schonbeck, F. (1995) Influence of VA-mycorrhiza on drought tolerance of flax (Linum usitatissimum L.). 2. Effect of VA-mycorrhiza on stomatal gas exchange, shoot water potential, phosphorous-nutrition and the accumulation of stress metabolites. J. Appl. Bot. 69, 183–188.Google Scholar
  14. 14.
    Bethlenfalvay, G. J. and Schuepp, H. (1994) Arbuscular mycorrhizas and agrosystem stability, in Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems (Gianinazzi, S. and Schuepp, H., eds.), Birkhauser Verlag, Basel, Switzerland, pp. 117–131.Google Scholar
  15. 15.
    Burleigh, S. H. and Harrison, M. J. (1998) A cDNA from the arbuscular mycorrhizal fungus Glomus versiforme with homology to a cruciform DNA binding protein from Ustilago maydis. Mycorrhiza 7, 301–306.CrossRefGoogle Scholar
  16. 16.
    Butehorn, B., Gianinazzi-Pearson, V., and Franken, P. (1999) Quantification of beta-tubulin RNA expression during asymbiotic and symbiotic development of the arbuscular mycorrhizal fungus Glomus mosseae. Mycol. Res. 103, 360–364.CrossRefGoogle Scholar
  17. 17.
    Delp, G., Smith, S. E., and Barker, S. J. (2000) Isolation by differential display of three partial cDNAs potentially coding for proteins from the VA mycorrhizal Glomus intraradices. Mycol. Res. 104, 293–300.CrossRefGoogle Scholar
  18. 18.
    Ferrol, N., Miguel-Barea, J., and Azcon-Aguilar, C. (2000) The plasma membrane H+-ATPase gene family in the arbuscular mycorrhizal fungus Glomus mosseae. Curr. Gen. 37, 112–118.CrossRefGoogle Scholar
  19. 19.
    Franken, P., Lapopin, L., Meyer-Gauen, G., et al. (1997) RNA accumulation and genes expressed in spores of the mycorrhizal fungus Gigasporsa rosea. Mycologia 89, 293–297.CrossRefGoogle Scholar
  20. 20.
    Harrier, L. A., Wright, F., and Hooker, J. E. (1998) Isolation of the 3-phosphoglycerate kinase gene from the arbuscular mycorrhizal fungus Glomus mosseae Nicol. & Gerd. Gerdemann & Trappe. Curr. Gen. 34, 386–392.CrossRefGoogle Scholar
  21. 21.
    Harrison, M. J. and Van Buuren, M. L. (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378, 626–629.PubMedCrossRefGoogle Scholar
  22. 22.
    Kaldorf, M., Schmelzer, E., and Bothe, H. (1998) Expression of maize and fungal nitrate reductase genes in arbuscular mycorrhiza. M. P. M. I. 11, 439–448.Google Scholar
  23. 23.
    Kaldorf, M., Zimmer, W., and Bothe, H. (1994) Genetic evidence for the occurrence of assimilatory nitrate reductase in arbuscular mycorrhizal and other fungi. Mycorrhiza 5, 23–28.CrossRefGoogle Scholar
  24. 24.
    Lanfranco, L., Garnero, L., and Bonfante, P. (1999) Chitin synthase genes in the arbuscular mycorrhizal fungus Glomus versiforme: full sequence of a gene encoding a class IV chitin synthase. FEMS Micro. Lett. 170, 59–67.CrossRefGoogle Scholar
  25. 25.
    Lanfranco, L., Vallino, M., and Bonfante, P. (1999) Expression of chitin synthase genes in the arbuscular mycorrhizal fungus Gigaspora margarita. New Phytol. 142, 347–354.CrossRefGoogle Scholar
  26. 26.
    Requena, N., Fuller, P., and Franken, P. (1999) Molecular characterisation of GmFOX2 an evolutionary highly conserved gene from the mycorrhizal fungus Glomus mosseae, down-regulated during the interaction with rhizobacteria. M. P. M. I. 12, 934–942.Google Scholar
  27. 27.
    Carpecchi, M. R. (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22, 479–488.CrossRefGoogle Scholar
  28. 28.
    Fernandez, S. M., Lurquin, P. F., and Kado, C. I. (1978) Incorporation and maintenance of recombinant-DNA plasmid vehicles pBR313 and pCR1 in plant protoplasts. Fed. Europ. Biochem. Soc. Lett. 87, 277–282.Google Scholar
  29. 29.
    Gordon, J. W., Scangos, G. A., Platkin, D. J., et al. (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. USA. 77, 7380–7384.PubMedCrossRefGoogle Scholar
  30. 30.
    Marton, L., Wullems, G. J., Molendyk, L., et al. (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277, 129–131.CrossRefGoogle Scholar
  31. 31.
    Schaffner, W. (1980) Direct transfer of cloned genes from bacteria to mammalian cells. Proc. Natl. Acad. Sci. USA 77, 2163–2167.PubMedCrossRefGoogle Scholar
  32. 32.
    Sanford, J. C. (1988) The biolistic process. Trends Biotechnol. 6, 299–302.CrossRefGoogle Scholar
  33. 33.
    Sanford, J. C. (1990) Biolistic transformation—a critical assessment. Physiol. Plant. 79, 206–209.CrossRefGoogle Scholar
  34. 34.
    Sanford, J. C. (1990) The biolistic process—an emerging tool for research and clinical applications, in Proceedings of the Biomedical Society (Milukeck, D. C. and Clarke, A. M., eds.). Virginia Polytechnic Institute. Blacksburg, VA. NY. New York University Press, NY, pp. 89–98.Google Scholar
  35. 35.
    Sanford, J. C., Devit, M. J., Russel, J. A., et al. (1991) An improved Helium driven biolistic device. Technique 3, 3–16.Google Scholar
  36. 36.
    Sanford, J. C., Klein, T. M., Wolf, E. D., et al. (1987) Delivery of substances into cells and tissues using a particle bombardment process. J. Part. Sci. Tech. 5, 27–37.CrossRefGoogle Scholar
  37. 37.
    Sanford, J. C., Smith, F. D., and Russel, J. A. (1993) Optimizing the biolistic process for different biological applications. Meth. Enzymo. 217, 483–509Google Scholar
  38. 38.
    Becker, D. K., Dugdale, B., Smith, M. K., et al. (2000) Genetic transformation of cavendish banana (Musa spp. AAA group) cv “Grand nain” via microprojectile bombardment. Plant Cell Rep. 19, 229–234.CrossRefGoogle Scholar
  39. 39.
    Fernando, D. D., Owens, J. N., and Misra, S. (2000) Transient gene expression in pine pollen tubes following particle bombardment. Plant Cell Rep. 12, 224–228.CrossRefGoogle Scholar
  40. 40.
    Fukuoka, H., Ogawa, T., Matsuoka, M., et al. (1998) Direct gene delivery into isolated microspores of rapeseed (Brassica napus L.) and production of fertile transgenic plants. Plant Cell Rep. 17, 323–328.CrossRefGoogle Scholar
  41. 41.
    Klein, T. M., Harper, E. C., Svab, Z., et al. (1988) Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc. Natl. Acad. Sci. USA 85, 8502–8505.PubMedCrossRefGoogle Scholar
  42. 42.
    Maenpaa, P., Gonzalez, E. B., Ahlandsberg, S., et al. (1999) Transformation of nuclear and plastonic plant genomes by biolistic particle bombardment. Mol. Biotech. 13, 67–72.CrossRefGoogle Scholar
  43. 43.
    Rasco-Gaunt, S., Riley, A., Barcelo, P., et al. (1999) Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep. 19, 118–127.CrossRefGoogle Scholar
  44. 44.
    Tang, K., Tinjuangjun, P., Xu, Y., et al. (1999) Particle bombardment mediated cotransformation of elite chinese rice cultivars with genes conferring resistance to bacterial blight and sap sucking insect pests. Planta 208, 552–563.CrossRefGoogle Scholar
  45. 45.
    Johnston, S. A. (1990) Biolistic transformation: Microbes to mice. Nature 346, 776,777.PubMedCrossRefGoogle Scholar
  46. 46.
    Mayfield, S. P. and Kindle, K. L. (1990) Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Proc. Natl. Acad. Sci. USA 87, 2087–2091.PubMedCrossRefGoogle Scholar
  47. 47.
    Shark, K. B., Smith, F. D., Harpending, P. R., et al. (1991) Biolistic transformation of a procaryote, Bacillus megaterium. Appl. Environ. Micro. 57, 480–485.Google Scholar
  48. 48.
    Bills, S. N., Richter, D. L., and Podila, G. K. (1995) Genetic transformation of the ectomycorrhizal fungus Paxillus involutus by particle bombardment, Mycol. Res. 99, 557–561.Google Scholar
  49. 49.
    Durand, R., Rascle, C., Fischer, M., et al. (1997) Transient expression of the β-glucuronidase gene after biolistic transformation of the anerobic fungus Neocallimastix frontalis. Curr. Gen. 31, 158–161.CrossRefGoogle Scholar
  50. 50.
    Fungaro, M. H., Rech, E., Muhlen, G. S., et al. (1995) Transformation of Aspergillus nidulans by microprojectile bombardment on intact conidia. FEMS Micro. Lett. 125, 193–298.CrossRefGoogle Scholar
  51. 51.
    St. Leger, R. J., Shimizu, S., Joshi, L., et al. (1995) Co-transformation of Metarrhizium anisopliae by electroporation or using the gene gun to produce stable GUS transformants. FEMS Micro. Lett. 131, 289–294.CrossRefGoogle Scholar
  52. 52.
    Kikkert, J. R. (1993) The Biolistic® PDS-1000/He device. Plant, Cell, Tiss. Org. Cult. 33, 221–226.CrossRefGoogle Scholar
  53. 53.
    Kikkert, J. R., Humiston, G. A., Roy, M. K., et al. (1999) Biological projectiles (Phage, yeast, bacteria) for genetic transformation of plants. In Vitro Cell. Dev. Biol.-Plant 35, 43–50.CrossRefGoogle Scholar
  54. 54.
    Rasmussen, J. L., Kikert, J. R., Roy, M. K., et al. (1994) Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles. Plant Cell Rep. 13, 212–217.CrossRefGoogle Scholar
  55. 55.
    Forbes, P. J., Millam, S., Hooker, J. E., et al. (1998) Transformation of the arbuscular mycorrhizal fungus Gigaspora rosea Nicolson & Schenck using particle bombardment. Mycol. Res. 102, 497–501.CrossRefGoogle Scholar
  56. 56.
    Bianciotto, V., Bandi, C., Minerdi, D., et al. (1996) An obligately endosymbiotic mycorrhizal fungus itself harbours obligately intracellular bacteria. Appl. Environ. Micro. 62, 3005–3010.Google Scholar
  57. 57.
    Wilson, K. J., Jefferson, R. A., and Hughes, S. G. (1992) The Escherichia coli gus operon: Induction and expression of the gus operon in E. coli and the occurrence and use of GUS in other bacteria, in, GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression (Gallagher, S. R., ed.), Academic Press, CA, pp. 7–22.Google Scholar
  58. 58.
    Blowers, A. D., Bogorod, L., Shark, K. B., et al. (1989) Studies on Chlamydomonas chloroplast transformation-Foreign DNA can be stably maintained in the chromosome. Plant Cell 1, 123–132.PubMedCrossRefGoogle Scholar
  59. 59.
    Klein, T. M., Wolf, E. D., Wu, R., et al. (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327, 70–73.CrossRefGoogle Scholar
  60. 60.
    Jones, E., Carpenter, M., Fong, D., et al. (1999) Transformation of the sclerotial mycoparasite Coniothyrium minitans with hygromycin B resistance and beta-glucuronidase markers. Mycol. Res. 103, 929–938.CrossRefGoogle Scholar
  61. 61.
    Roberts, I. N., Oliver, R. P., Punt, P. J., et al. (1989) Expression of the Escherichia coli β-glucuronidase gene in industrial and phytopathogenic filamentous fungi. Curr. Gen. 15, 177–180.CrossRefGoogle Scholar
  62. 62.
    Grace, C. and Stribley, D. P. (1991) A safer procedure for root staining of vesicular arbuscular mycorrhizal fungi. Mycol. Res. 95, 1160–1162.CrossRefGoogle Scholar
  63. 63.
    Forbes, P., Millam, S., Harrier, L., et al. (1998) Transformation of the arbuscular mycorrhizal fungus Gigaspora rosea Nicolson & Schenck by particle bombardment, in Proceedings of the Second International Conference on Mycorrhiza, July 5–10, SLU Service/Repro, Uppsala, pp. 63,64.Google Scholar
  64. 64.
    Hosny, M., Païs de Barros, J., Gianinazzi-Pearson, V., et al. (1997) Base composition of DNA from Glomalean Fungi: high amounts of methylated cytosine. Fun. Gen. Biol. 22, 103–111.CrossRefGoogle Scholar
  65. 65.
    Hargreaves, J. and Turner, G. (1992) Gene transformation in plant pathogenic fungi, in Molecular Plant Pathology (Gurr, S.J., McPherson, M.J., and Bowles, D.J., eds.) Oxford University Press, pp. 79–97.Google Scholar
  66. 66.
    Judelson, H. S., Tyler, B. M., and Micelmore, R. W. (1992) Regulatory sequences for expressing genes in oomycete fungi. Mol. Gen. Genet. 234, 138–146.PubMedGoogle Scholar
  67. 67.
    Fischer, M., Durand, R., and Fevre M. (1995) Characterisation of the promoter region of the enolase encoding gene ENOL from the anaerobic fungus Neocallimastix frontalis. Sequence and Promoter analysis. Curr. Gen. 28, 80–86.CrossRefGoogle Scholar
  68. 68.
    Harrier, L. A. (2001) Isolation and sequence analysis of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe 3-phosphoglycerale kinase (PGK) gene promoter region. DNA Seq., in press.Google Scholar
  69. 69.
    Laufs, J., Wirtz, U., Kammann, M., et al. (1990) Wheat dwarf virus AC/DS vectors-expression and excision of transposable elements introduced into various cereals by a viral replicon. Proc. Natl. Acad. Sci. USA 87, 7752–7756.PubMedCrossRefGoogle Scholar
  70. 70.
    Zeze, A., Hosny, M., Gianinazzi-Pearson, V., et al. (1996) Characterisation of a highly repeated DNA sequence (SC1) from the arbuscular mycorrhizal fungus Scutellospora castanea and its detection in planta. Appl. Environ. Micro. 62, 2443–2448.Google Scholar
  71. 71.
    Zeze, A., Hosny, M., Tuinen, D., et al. (1999) MYC-DIRE, a dispersed repetitive DNA element in arbuscular mycorrhizal fungi. Mycol. Res. 103, 572–576.CrossRefGoogle Scholar
  72. 72.
    Ruiz-Diez, B. and Martinez-Suarez, J. V. (1999) Electrotransformation of the human pathogenic fungus Scedosporium prolificans mediated by repetitive rDNA sequences. FEMS Immuno. Med. Micro. 25, 275–282.CrossRefGoogle Scholar
  73. 73.
    Kaya, S., Imai, T., and Ishige, M. (1990) The efficiency of transformation by Agrobacterium tumefaciens without selection marker. Jpn. J. Breed. 40, 82,83.Google Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  1. 1.Plant and Crop Science DivisionScottish Agricultural CollegeEdinburgh, West LothianScotland, UK

Personalised recommendations