Molecular Biotechnology

, Volume 16, Issue 1, pp 53–65 | Cite as

Plant transformation technology

Developments and applications
  • Christine A. Newell


Plant transformation has its roots in the research on Agrobacterium that was being undertaken in the early 1980s. The last two decades have seen significant developments in plant transformation technology, such that a large number of transgenic crop plants have now been released for commercial production. Advances in the technology have been due to development of a range of Agrobacterium-mediated and direct DNA delivery techniques, along with appropriate tissue culture techniques for regenerating whole plants from plant cells or tissues in a large number of species. In addition, parallel developments in molecular biology have greatly extended the range of investigations to which plant transformation technology can be applied. Research in plant transformation is concentrating now not so much on the introduction of DNA into plant cells, but rather more on the problems associated with stable integration and reliable expression of the DNA once it has been integrated.

Index Entries

Plant transformation Agrobacterium direct DNA delivery particle bombardment plastid transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birch, R. G. (1997) Plant transformation: problems and strategies for practical application. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 297–326.CrossRefPubMedGoogle Scholar
  2. 2.
    Gelvin, S. B. (1998) The introduction and expression of transgenes in plants. Current Opinion in Biotechnology 9, 227–232.CrossRefPubMedGoogle Scholar
  3. 3.
    Hansen, G. and Wright, M. S. (1999) Recent advances in the transformation of plants. Trends in Plant Science 4, 226–231.CrossRefPubMedGoogle Scholar
  4. 4.
    Komari, T., Hiei, Y., Ishida, Y., Kumashiro, T., and Kubo, T. (1998) Advances in cereal gene transfer. Current Opinion in Plant Biology 1, 161–165.CrossRefPubMedGoogle Scholar
  5. 5.
    Prescott, A., Briddon, R., and Harwood, W. (1998) Plant transformation, in Molecular Biomethods Handbook, (Rapley, R. and Walker, J. M., eds.), Humana Press Inc, Totowa, NJ, pp. 251–269.Google Scholar
  6. 6.
    Galun, E. and Breiman, A. (1997) Transgenic Plants, Imperial College Press, London.Google Scholar
  7. 7.
    Lindsey, K. (1998) Transgenic Plant Research. Harwood Academic Publishers.Google Scholar
  8. 8.
    Gheysen, G., Angenon, G., and Van Montagu, M. (1998) Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant applications, in Transgenic Plant Research (Lindsey, K., ed.), Harwood Academic Publishers, pp. 1–33.Google Scholar
  9. 9.
    Herrera-Estrella, L., Depicker, A., Van Montagu, M., and Schell, J. (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303, 209–213.CrossRefGoogle Scholar
  10. 10.
    Trick, H. N. and Finer, J. J. (1998) Sonication assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep. 17, 482–488.CrossRefGoogle Scholar
  11. 11.
    Zuker, A., Ahroni, A., Tzfira, T., Ben-Meir, H., and Vainstein, A. (1999) Wounding by bombardment yields highly efficient Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.) Mol. Breed. 5, 367–375.CrossRefGoogle Scholar
  12. 12.
    Bidney, D. (1999) Plant transformation method using agrobacterium species adhered to microprojectiles. United States Patent 5,932,782.Google Scholar
  13. 13.
    Meyer, P. (1998) Stabilities and instabilities in transgene expression, in Transgenic Plant Research (Lindsey, K., ed.), Harwood Academic Publishers, pp. 263–275.Google Scholar
  14. 14.
    Chilton, M. -D., Tepfer, D. A., Petit, A., David, C., Casse-Delbart, F., and Tempé, J. (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295, 432–434.CrossRefGoogle Scholar
  15. 15.
    Tepfer, D. (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37, 959–967.CrossRefPubMedGoogle Scholar
  16. 16.
    Flores, H. E., Vivanco, J. M., and Loyola-Vargas, V. M. (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends in Plant Science 4, 220–226.CrossRefPubMedGoogle Scholar
  17. 17.
    Shanks, J. V. and Morgan, J. (1999) Plant ‘hairy root’ culture. Current Opinion in Biotechnology 10, 151–155.CrossRefPubMedGoogle Scholar
  18. 18.
    Liu, C. Z., Wang, Y. C., Zhao, B., Guo, C., Ouyang, F., Ye, H. C., and Li, G. F. (1999) Development of a nutrient mist bioreactor for growth of hairy roots. In Vitro Cell. Dev. Biol. — Plant 35, 271–274.CrossRefGoogle Scholar
  19. 19.
    Barcelo, P. and Lazzeri, P. A. (1998) Direct gene transfer: chemical, electrical and physical methods, in Transgenic Plant Research (Lindsey, K., ed.), Harwood Academic Publishers, pp. 35–55.Google Scholar
  20. 20.
    Harwood, W. A., Chen, D. -F., and Creissen, G. P. (1996) Transformation of pollen and microspores — a review, in In Vitro Haploid Production in Higher Plants, vol. 2 (Jain, S. M., Sopory, S. K., and Veilleux, R. E., eds.), Kluwer Academic Publishers, Netherlands, pp. 53–71.Google Scholar
  21. 21.
    Krens, F. A., Molendijk, L., Wullems, G. J., and Schilperoort, R. A. (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296, 72–74.CrossRefGoogle Scholar
  22. 22.
    Fromm, M., Taylor, L. P., and Walbot, V. (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. 82, 5824–5828.CrossRefPubMedGoogle Scholar
  23. 23.
    Crossway, A., Oakes, J. V., Irvine, J. M., Ward, B., Knauf, V. C., and Shewmaker, C. K. (1986) Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol. Gen. Genet. 202, 179–185.CrossRefGoogle Scholar
  24. 24.
    Fischer, R. and Hain, R. (1995) Tobacco protoplast transformation and use for functional analysis of newly isolated genes and gene constructs. Methods Cell Biol. 50, 401–410.PubMedGoogle Scholar
  25. 25.
    Koop, H. U., Steinmüller, K., Wagner, H., Rössler, C., Eibl, C., and Sacher, L. (1996) Integration of foreign sequences into the tobacco plastome via polyethylene glycol-mediated protoplast transformation. Planta 199, 193–201.CrossRefPubMedGoogle Scholar
  26. 26.
    Bates, G. W. (1999) Plant transformation via protoplast electroporation. Methods Mol. Biol. 111, 359–366.PubMedGoogle Scholar
  27. 27.
    Mathur, J. and Koncz, C. (1998) PEG-mediated protoplast transformation with naked DNA. Methods Mol. Biol. 82, 267–276.PubMedGoogle Scholar
  28. 28.
    Klein, T. M., Wolf, E. D., Wu, R., and Sanford, J. C. (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327, 70–73.CrossRefGoogle Scholar
  29. 29.
    Boynton, J. E. and Gillham, N. W. (1996) Genetics and transformation of mitochondria in the green alga Chlamydomonas. Methods in Enzymology 264, 279–296.PubMedGoogle Scholar
  30. 30.
    Staub, J. M., Garcia, B., Graves, J., Hajdukiewicz, P. T. J., Hunter, P., Nehra, N., et al. (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nature Biotechnology 18, 333–338.CrossRefPubMedGoogle Scholar
  31. 31.
    Lowe, K., Bowen, B., Hoerster, G., Ross, M., Bond, D., Pierce, D., and Gordon-Kamm, B. (1995) Germline transformation of maize following manipulation of chimeric shoot meristems. Bio/Technology 13, 677–682.CrossRefGoogle Scholar
  32. 32.
    Pawlowski, W. P. and Somers, D. A. (1998) Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc. Natl. Acad. Sci USA 95, 12,106–12,110.CrossRefGoogle Scholar
  33. 33.
    Chen, L., Marmey, P., Taylor, N. J., Brizard, J.-P., Espinoza, C., D’Cruz, P., et al. (1998) Expression and inheritance of multiple transgenes in rice plants. Nature Biotechnology 16, 1060–1064.CrossRefPubMedGoogle Scholar
  34. 34.
    Kikkert, J. R., Humiston, G. A., Roy, M. K., and Sanford, J. C. (1999) Biological projectiles (phage, yeast, bacteria) for genetic transformation of plants. In Vitro Cell. Dev. Biol. -Plant 35, 43–50.CrossRefGoogle Scholar
  35. 35.
    Luthra, R., Varsha, R. K. D., Srivastava, A. K., and Kumar, S. (1997) Microprojectile mediated plant transformation: A bibliographic search. Euphytica 95, 269–294.CrossRefGoogle Scholar
  36. 36.
    D’Halluin, K., Bonne, E., Bossut, M., De Beuckeleer, M., and Leemans, J. (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4, 1495–1505.CrossRefPubMedGoogle Scholar
  37. 37.
    Chowrira, G. M., Akella, V., and Lurquin, P. F. (1995) Electroporation-mediated gene transfer into intact nodal meristems in planta. Molecular Biotechnology 3, 17–23.PubMedGoogle Scholar
  38. 38.
    Wang, K., Drayton, P., Frame, B., Dunwell, J., and Thompson, J. (1995) Whisker-mediated plant transformation: an alternative technology. In Vitro Cell Dev. Biol. 31, 101–104.CrossRefGoogle Scholar
  39. 39.
    Neuhaus, G., Spangenberg, G., Scheid, O. M., and Schweiger, H.-G. (1987) Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor. Appl. Genet. 75, 30–36.CrossRefGoogle Scholar
  40. 40.
    Jones-Villeneuve, E., Huang, B., Prudhomme, I., Bird, S., Kemble, R., Hattori, J., and Miki, B. (1995) Assessment of microinjection for introducing DNA into uninuclear microspores of rapeseed. Plant Cell Tissue Org. Cult. 40, 97–100.CrossRefGoogle Scholar
  41. 41.
    Park, S. H., Rose, S. C., Zapata, C., Srivatanakul, M., and Smith, R. H. (1998) Cross-protection and selectable marker genes in plant transformation. In Vitro Cell. Dev. Biol. -Plant 34, 117–121.Google Scholar
  42. 42.
    Irdani, T., Bogani, P., Mengoni, A., Mastromei, G., and Buiatti, M. (1998) Construction of a new vector conferring methotrexate resistance in Nicotiana tabacum plants. Plant Mol. Biol. 37, 1079–1084.CrossRefPubMedGoogle Scholar
  43. 43.
    Hallmann, A. and Rappel, A. (1999) Genetic engineering of the multicellular green alga Volvox: a modified and multiplied bacterial antibiotic resistance gene as a dominant selectable marker. Plant J. 17, 99–109.PubMedGoogle Scholar
  44. 44.
    Haldrup, A., Petersen, S. G., and Okkels, F. T. (1998) The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mol. Biol. 37, 287–296.CrossRefPubMedGoogle Scholar
  45. 45.
    Nap, J. P., Bijvoet, J., and Stiekema, W. J. (1992) Biosafety of kanamycin-resistant transgenic plants: an overview. Transgenic Crops 1, 239–249.CrossRefGoogle Scholar
  46. 46.
    Fuchs, R. L., Ream, J. E., Hammond, B. G., Naylor, M. W., Leimgruber, R. M., and Berberich, S. A. (1993) Safety assessment of the neomycin phosphotransferase II (NPTII) protein. Bio/Technology 11, 1543–1547.PubMedGoogle Scholar
  47. 47.
    Gleave, A. P., Mitra, D. S., Mudge, S. R., and Morris, B. A. M. (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol. Biol. 40, 223–235.CrossRefPubMedGoogle Scholar
  48. 48.
    Sheen, J., Hwang, S., Niwa, Y., Kobayashi, H., and Galbraith, D. W. (1995) Green-fluorescent protein as a new vital marker in plant cells. Plant J. 8, 777–784.CrossRefPubMedGoogle Scholar
  49. 49.
    Sidorov V. A., Kasten, D., Pang, S.-Z., Hajdukiewicz, P. T. J., Staub, J. M., and Nehra, N. S. (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J. 19, 209–216.CrossRefPubMedGoogle Scholar
  50. 50.
    Khan, M. S. and Maliga, P. (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nature Biotechnology 17, 910–915.CrossRefPubMedGoogle Scholar
  51. 51.
    McCormac, A. C., Elliott, M. C., and Chen, D. F. (1997) pBECKS. A flexible series of binary vectors for Agrobacterium-mediated plant transformation. Mol. Biotechnol. 8, 199–213.PubMedGoogle Scholar
  52. 52.
    Xiang, C., Han, P., Lutziger, I., Wang, K., and Oliver, D. J. (1999) A mini binary vector series for plant transformation. Plant Mol. Biol. 40, 711–717.CrossRefPubMedGoogle Scholar
  53. 53.
    Hamilton, C. M., Frary, A., Lewis, C., and Tanksley, S. D. (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA 93, 9975–9979.CrossRefPubMedGoogle Scholar
  54. 54.
    Mullen, J., Adam, G., Blowers, A., and Farle, E. (1998) Biolistic transfer of large DNA fragments to tobacco cells using YACs retrofitted for plant transformation. Mol. Breeding 4, 449–457.CrossRefGoogle Scholar
  55. 55.
    Han, K. H., Ma, C. P., and Strauss, S. H. (1997) Matrix attachment regions (MARs) enhance transformation frequency and transgene expression in poplar. Transgenic Research 6, 415–420.CrossRefGoogle Scholar
  56. 56.
    Srivastava, V., Anderson, O. D., and Ow, D. W. (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc. Natl. Acad. Sci. USA 96, 11,117–11,121.Google Scholar
  57. 57.
    Torisky, R. S., Kovacs, L., Avdiushko, S., Newman, J. D., Hunt, A. G., and Collins, G. B. (1997) Development of a binary vector system for plant transformation based on the supervirulent Agrobacterium tumefaciens strain Chry 5. Plant Cell Rep. 17, 102–108.CrossRefGoogle Scholar
  58. 58.
    Gressel, J. (1999) Tandem constructs: preventing the rise of superweeds, Tibtech 17, 361–366.Google Scholar
  59. 59.
    Rochaix, J.-D. and van Dillewijn, J. (1982) Transformation of the green alga Chlamydomonas reinhardii with yeast DNA. Nature 296, 70–72.CrossRefPubMedGoogle Scholar
  60. 60.
    Renn, D. (1997) Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects. Tibtech 15, 9–14.Google Scholar
  61. 61.
    Day, J. G., Benson, E. E., and Fleck, R. A. (1999) In vitro culture and conservation of microalgae: applications for aquaculture, biotechnology and environmental research. In Vitro Cell. Dev. Biol.—Plant 35, 127–136.CrossRefGoogle Scholar
  62. 62.
    El-Sheekh, M. M. (1999) Stable transformation of the intact cells of Chlorella kessleri with high velocity microprojectiles. Biol. Plant. 42, 209–216.CrossRefGoogle Scholar
  63. 63.
    Shimogawara, K., Fujiwara, S., Grossman, A., and Usuda, H. (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148, 1821–1828.PubMedGoogle Scholar
  64. 64.
    Boynton, J. E. and Gillham, N. W. (1993) Chloroplast transformation in Chlamydomonas. Methods in Enzymology 217, 510–536.PubMedCrossRefGoogle Scholar
  65. 65.
    Apt, K. E., Kroth-Pancic, P. G., and Grossman, A. R. (1996) Stable nuclear transformation of the diatom Phaedactylum tricornutum. Mol. Gen. Genet. 252, 572–579.PubMedGoogle Scholar
  66. 66.
    Cho, S. -H., Chung, Y. -S., Cho, S. -K., Rim, Y.-W., and Shin, J. -S. (1999) Particle bombardment mediated transformation and GFP expression in the moss Physcomitrella patens. Mol. Cells 9, 14–19.PubMedGoogle Scholar
  67. 67.
    Zeidler, M., Hartmann, E., and Hughes, J. (1999) Transgene expression in the moss Ceratodon purpureus. J. Plant Physiol. 154, 641–650.Google Scholar
  68. 68.
    De Block, M., Schell, J., and Van Montagu, M. (1985) Chloroplast transformation by Agrobacterium tumefaciens. Embo J. 4, 1367–1372.PubMedGoogle Scholar
  69. 69.
    McBride, K. E., Svab, Z., Schaaf, D. J., Hogan, P. S., Stalker, D. M., and Maliga, P. (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technology 13, 362–365.CrossRefPubMedGoogle Scholar
  70. 70.
    Daniell, H., Datta, R., Varma, S., Gray, S., and Lee, S. -B. (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol. 16, 345–348.CrossRefPubMedGoogle Scholar
  71. 71.
    Jang, I. -C., Nahm, B. H., and Kim, J. -K. (1999). Subcellular targeting of green fluorescent protein to plastids in transgenic rice plants provides a high-level expression system. Mol. Breeding 5, 453–461.CrossRefGoogle Scholar
  72. 72.
    McBride, K. E., Schaaf, D. J., Daley, M., and Stalker, D. M. (1994) Controlled expression of plastid transgenes in plants based on a nuclear DNA-encoded and plastid-targeted T7 RNA polymerase. Proc. Natl. Acad. Sci. 91, 7301–7305.CrossRefPubMedGoogle Scholar
  73. 73.
    Grierson, D. (1998) Manipulation of fruit ripening by genetic modification, in Transgenic Plant Research (Lindsey, K., ed.), Harwood Academic Publishers, pp. 109–124.Google Scholar
  74. 74.
    Mitten, D. H., MacDonald, R., and Klonus, D. (1999) Regulation of foods derived from genetically engineered crops. Current Opinion in Biotechnology 10, 298–302.CrossRefPubMedGoogle Scholar
  75. 75.
    Briggs, S. P. and Koziel, M. (1998) Engineering new plant strains for commercial markets, Current Opinion in Biotechnology 9, 233–235.CrossRefPubMedGoogle Scholar
  76. 76.
    Brasileiro, A. C. M., Leplé, J.-C., Muzzin, J., Ounnoughi, D., Michel, M.-F., and Jouanin, L. (1991) An alternative approach for gene transfer in trees using wild-type Agrobacterium strains. Plant Mol. Biol. 17, 441–452.CrossRefPubMedGoogle Scholar
  77. 77.
    Grayburn, W. S. and Vick, B. A. (1995) Transformation of sunflower (Helianthus annuus L.) following wounding with glass beads. Plant Cell Rep. 14, 285–289.CrossRefGoogle Scholar
  78. 78.
    Bechtold, N. and Pelletier, G. (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol. 82, 259–266.PubMedGoogle Scholar
  79. 79.
    Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.CrossRefPubMedGoogle Scholar
  80. 80.
    Chang, S. S., Park, S. K., Kim, B. C., Kang, B. J., Kim, D. U., and Nam, H. G. (1994) Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. Plant J. 5, 551–558.Google Scholar
  81. 81.
    Feldmann, K. A. and Marks, M. D. (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol. Gen. Genet. 208, 1–9.CrossRefGoogle Scholar
  82. 82.
    Zaghmout, O. M. -F. and Trolinder, N. L. (1993) Simple and efficient method for directly electroporating Agrobacterium plasmid DNA into wheat callus cells. Nucleic Acids Res. 21, 1048.CrossRefPubMedGoogle Scholar
  83. 83.
    Kikkert, J. R. (1993) The Biolistic®PDS-1000/He device. Plant Cell, Tissue and Organ Culture 33, 221–226.CrossRefGoogle Scholar
  84. 84.
    McCabe, D. and Christou, P. (1993) Direct DNA transfer using electric discharge particle acceleration (ACCELLTM technology). Plant Cell, Tissue and Organ Culture 33, 227–236.CrossRefGoogle Scholar
  85. 85.
    Vain, P., Keen, N., Murillo, J., Rathus, C., Nemes, C., and Finer, J. J. (1993) Development of the Particle Inflow Gun. Plant Cell, Tissue and Organ Culture 33, 237–246.CrossRefGoogle Scholar
  86. 86.
    Oard, J. (1993) Development of an airgun device for particle bombardment. Plant Cell, Tissue and Organ Culture 33, 247–250.CrossRefGoogle Scholar
  87. 87.
    Sautter, C. (1993) Development of a microtargeting device for particle bombardment of plant meristems. Plant Cell, Tissue and Organ Culture 33, 251–257.CrossRefGoogle Scholar
  88. 88.
    Takeuchi, Y., Dotson, M., and Keen, N. T. (1992) Plant transformation: a simple particle bombardment device based on flowing helium. Plant Mol. Biol. 18, 835–839.CrossRefPubMedGoogle Scholar
  89. 89.
    Guo, Y., Liong, H., and Bouss, M. W. (1995) Laser mediated gene transfer in rice. Physiologia Plantarum 93, 19–24.CrossRefGoogle Scholar
  90. 90.
    Hirsch, R. E. and Sussman, M. R. (1999) Improving nutrient capture from soil by the genetic manipulation of crop plants. Tibtech 17, 356–361.Google Scholar
  91. 91.
    Heyer, A. G., Lloyd, J. R., and Kossmann, J. (1999) Production of modified polymeric carbohydrates. Current Opinion in Biotechnology 10, 169–174.CrossRefPubMedGoogle Scholar
  92. 92.
    Slater, S., Mitsky, T. A., Houmiel, K. L., Hao, M., Reiser, S. E., Taylor, N. B., et al. (1999) Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nature Biotechnology 17, 1011–1016.CrossRefPubMedGoogle Scholar
  93. 93.
    Murphy, D. J. (1999) Production of novel oils in plants. Current Opinion in Biotechnology, 10, 175–180.CrossRefPubMedGoogle Scholar
  94. 94.
    Ohlrogge, J. and Browse, J. (1998) Manipulation of seed oil production, in Transgenic Plant Research (Lindsey, K., ed.), Harwood Academic Publishers, pp. 151–174.Google Scholar
  95. 95.
    Lange, B. M. and Croteau, R. (1999) Genetic engineering of essential oil production in mint. Current Opinion in Plant Biology 2, 139–144.CrossRefPubMedGoogle Scholar
  96. 96.
    Poirier, Y. (1999) Production of new polymeric compounds in plants. Current Opinion in Biotechnology 10, 181–185.CrossRefPubMedGoogle Scholar
  97. 97.
    Kusnadi, A. R., Hood, E. E., Witcher, D. R., Howard, J. A., and Nikolov, Z. L. (1998) Production and purification of two recombinant proteins from transgenic corn. Biotechnol. Prog. 14, 149–155.CrossRefPubMedGoogle Scholar
  98. 98.
    Herbers, K. and Sonnewald, U. (1999) Production of new/modified proteins in transgenic plants. Current Opinion in Biotechnology 10, 163–168.CrossRefPubMedGoogle Scholar
  99. 99.
    Raskin, I., Smith, R. D., and Salt, D. E. (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology 8, 221–226.CrossRefPubMedGoogle Scholar
  100. 100.
    Whitelam, G. C. and Cockburn, W. (1998) Production of recombinant antibodies in transgenic plants, in Transgenic Plant Research (Lindsey, K., ed.), Harwood Academic Publishers, pp. 219–227.Google Scholar
  101. 101.
    Rodgers, P. B., Hamilton, W. D. O., and Adair, J. R. (1999) The therapeutic potential of plant-derived vaccines and antibodies. Exp. Opin. Invest. Drugs 8, 211–227.CrossRefGoogle Scholar
  102. 102.
    Mol, J., Cornish, E., Mason, J., and Koes, R. (1999) Novel coloured flowers. Current Opinion in Biotechnology 10, 198–201.CrossRefPubMedGoogle Scholar
  103. 103.
    Hu, W.-J., Harding, S. A., Lung, J., Popko, J. L., Ralph, J., Stokke, D. D., et al. (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat. Biotechnol. 17, 808–812.CrossRefPubMedGoogle Scholar
  104. 104.
    O’Connell, A., Bolwell, P., and Schuch, W. (1998) Impact of forest tree biotechnology on the pulp and paper-making processes in the 21st century, in Transgenic Plant Research (Lindsey, K., ed.), Harwood Academic Publishers, pp. 175–186.Google Scholar
  105. 105.
    Holmberg, N. and Bülow, L. (1998) Improving stress tolerance in plants by gene transfer. Trends in Plant Science 3, 61–66.CrossRefGoogle Scholar
  106. 106.
    Nuccio, M. L., Rhodes, D., McNeil, S. D., and Hanson, A. D. (1999) Metabolic engineering of plants for osmotic stress resistance. Current Opinion in Plant Biology 2, 128–134.CrossRefPubMedGoogle Scholar
  107. 107.
    Frey, A., Audran, C., Marin, E., Sotta, B., and Marion-Poll, A. (1999) Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression. Plant Mol. Biol. 39, 1267–1274.CrossRefPubMedGoogle Scholar
  108. 108.
    Anthony, R. G., Reichelt, S., and Hussey, P. J. (1999) Dinitroaniline herbicide-resistant transgenic tobacco plants generated by co-overexpression of a mutant α-tubulin and a β-tubulin. Nat. Biotechnology, 17, 712–716.CrossRefGoogle Scholar
  109. 109.
    De Maagd, R. A., Bosch, D., and Stiekema, W. (1999) Bacillus thuringiensis toxin-mediated insect resistance in plants. Trends in Plant Science 4, 9–13.CrossRefPubMedGoogle Scholar
  110. 110.
    Dempsey, D.’M. A., Silva, H., and Klessig, D. F. (1998) Engineering disease and pest resistance in plants. Trends in Microbiology 6, 54–61.CrossRefPubMedGoogle Scholar
  111. 111.
    Mourgues, F., Brisset, M. -N., and Chevreau, E. (1998) Strategies to improve plant resistance to bacterial diseases through genetic engineering. Trends in Biotechnology 16, 203–210.CrossRefPubMedGoogle Scholar
  112. 112.
    Zhang, L., Xu, J., and Birch, R. G. (1999) Engineered detoxification confers resistance against a pathogenic bacterium. Nature Biotechnology 17, 1021–1024.CrossRefPubMedGoogle Scholar
  113. 113.
    Salmeron, J. M. and Vernooij, B. (1998) Transgenic approaches to microbial disease resistance in crop plants. Current Opinion in Plant Biology 1, 347–352.CrossRefPubMedGoogle Scholar
  114. 114.
    Beachy, R. (1997) Mechanisms and applications of pathogen-derived resistance in transgenic plants. Current Opinion in Biotechnology 8, 215–220.CrossRefPubMedGoogle Scholar
  115. 115.
    Jung, C., Cai, D., and Kleine, M. (1998) Engineering nematode resistance in crop species. Trends in Plant Science 3, 266–271.CrossRefGoogle Scholar
  116. 116.
    Lilley, C. J., Devlin, P., Urwin, P. E., and Atkinson, H. J. (1999) Parasitic nematodes, proteinases and transgenic plants. Parasitology Today 15, 414–417.CrossRefPubMedGoogle Scholar
  117. 117.
    Shewry, P. R. (1998) Manipulation of seed storage proteins, in Transgenic Plant Research (Lindsey, K., ed.), Harwood Academic Publishers, pp. 135–149.Google Scholar
  118. 118.
    Tabe, L. and Higgins, T. J. V. (1998) Engineering plant protein composition for improved nutrition. Trends in Plant Science 3, 282–286.CrossRefGoogle Scholar
  119. 119.
    Hirschberg, J. (1999) Production of high-value compounds: carotenoids and vitamin E. Current Opinion in Biotechnology 10, 186–191.CrossRefPubMedGoogle Scholar
  120. 120.
    Broun, P., Gettner, S., and Somerville, C. (1999) Genetic engineering of plant lipids. Annu. Rev. Nutr. 19, 197–216.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • Christine A. Newell
    • 1
  1. 1.Department of Plant SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations