Advertisement

Molecular Biotechnology

, Volume 14, Issue 2, pp 165–172 | Cite as

High-copy cDNA amplification of minimal total RNA quantities for gene expression analyses

  • Holger Schwabe
  • Ulrike Stein
  • Wolfgang Walther
Protocol

Abstract

This protocol describes a PCR-based cDNA amplification technique of small total RNA quantities, optimized for determination and verification of gene expression variations in cells or tissue specimen. A proportional amplification of rare and abundant transcripts is thereby achieved by initial random hexamer-primed reverse transcription of total RNA. Compared to established oligo(dT)-primed techniques, this approach generates shorter than full length copies of long RNAs which leads to a normalized cDNA pool for a more adequate PCR-amplification. Subsequent double oligo(dA) tailing of the synthesized total cDNA strands and the utilization of heteropolymeric primers allow a highly specific, up to 500-fold PCR-amplification of the total cellular RNA amount. Thus, obstacles in availability of RNA from limited sources, such as human biopsies or microdissected histological sections, can be overcome.

The amplified total cDNA (atcDNA) is shown to be applicable for confirmation of differential gene expression, as demonstrated in this protocol by expression analysis of the multidrug resistance-associated genes mdr1, mrp1 and lrp, using human cell lines as well as microdissected human tissue sections.

Index Entries

RNA amplification amplified total cDNA (atcDNA) RT-PCR multidrug resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liang, P., and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.PubMedCrossRefGoogle Scholar
  2. 2.
    Van Gelder, R. M., von Zastrow, E., Yool, A., Dement, W. C., Barchas, J. D., and Eberwine, J. H. (1990) Amplified RNA synthesized from limited quantities of heterogenous cDNA. Proc. Natl. Acad. Sci. USA 87, 1663–1667.PubMedCrossRefGoogle Scholar
  3. 3.
    Poirier, G. M.-C., Pyati, J., Wan, J. S., and Erlander, M. G. (1997) Screening differentially expressed cDNA clones obtained by differential display using amplified RNA. Nucleic Acids Res. 25, 913–914.PubMedCrossRefGoogle Scholar
  4. 4.
    Froussard, P. (1993) rPCR: a powerful tool for random amplification of whole RNA sequences. PCR Methods Appl. 2, 185–190.PubMedGoogle Scholar
  5. 5.
    Ross, R., Kumpf, K., and Reske-Kunz, A. B. (1997) PCR amplified cDNA probes for verification of differentially expressed genes. BioTechniques 22, 894–897.PubMedGoogle Scholar
  6. 6.
    Shepard, S. B., and Cooper, A. G. (1997) PCR synthesis of cDNA from total RNA. BioTechniques 23, 204–206.Google Scholar
  7. 7.
    Zijlstra, J. G., de Vries, E. G. E., and Mulder, N. H. (1987) Multifactorial drug resistance in an adriamycin-resistant human small lung carcinoma cell line. Cancer Res. 47, 1780–1784.PubMedGoogle Scholar
  8. 8.
    Clynes, M. (1998) Multiple Drug Resistance in Cancer 2. Molecular, Cellular, and Clinical Aspects, Kluwer Academic Publishers, Dodrecht, Boston, London.Google Scholar
  9. 9.
    Gekeler, V., Ise, W., Sanders K. H., Ulrich, W.-R., and Beck, J. (1995) The leukotriene LTD4 receptor antagonist MK571 specifically modulates MRP associated multidrug resistance. Biochem. Biophys. Res. Commun. 208, 345–352.PubMedCrossRefGoogle Scholar
  10. 10.
    Wu, L., Smythe, A. M., Stinson, S. F., Mullendore, L. A., Monks, A., Scudiero, D. A., Paull, K. D., Koutsoukos, A. D., Rubinstein, L. V., Boyd, M. R., and Shoemaker, R. H. (1992) Multidrug-resistant phenotype of disease-oriented panels of human tumor cell lines used for anticancer drug screening. Cancer Res. 52, 3029–034.PubMedGoogle Scholar
  11. 11.
    Noonan, K. E., Beck, C., Holzmayer, T. A., Chin, J. E., Wunder, J. S., Andrulis, I. C., Gazdar, A. F., Willman, C. L., Griffith, B., von Hoff, D. D., and Roninson, I. B. (1990) Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 7160–7164.PubMedCrossRefGoogle Scholar
  12. 12.
    Abbaszadegan, M. R., Futscher, B. W., Klimecki, W. T., List, A., and Dalton, W. S. (1994) Analysis of multidrug resistance-associated protein (MRP) messenger RNA in normal and malignant hematopoietic cells. Cancer Res. 54, 4676–4679.PubMedGoogle Scholar
  13. 13.
    Hu, Y., Slapak, C. A., Cao, J., Law, K. L., Ma, L., Tanzer, L. R., and Moore, R.E. (1999) The induction of major vault protein (MVP) mRNA is a very early response of human U-937 myeloid leukemia cells to exposure to doxorubicin (Dox). Proc. Am. Ass. Cancer Res. 40, 667.Google Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  1. 1.Dept. Surgery/Surgical OncologyMax-Delbrück-Center for Molecular MedicineBerlinGermany

Personalised recommendations