Molecular Biotechnology

, Volume 12, Issue 1, pp 35–71 | Cite as

Nitrogen catabolite repression in Saccharomyces cerevisiae

Review

Abstract

In Saccharomyces cerevisiae the expression of all known nitrogen catabolite pathways are regulated by four regulators known as Gln3, Gat1, Dal80, and Deh1. This is known as nitrogen catabolite repression (NCR). They bind to motifs in the promoter region to the consensus sequence 5′ GATAA 3′. Gln3 and Gat1 act positively on gene expression whereas Dal80 and Deh1 act negatively. Expression of nitrogen catabolite pathway genes known to be regulated by these four regulators are glutamine, glutamate, proline, urea, arginine, GABA, and allantoine. In addition, the expression of the genes encoding the general amino acid permease and the ammonium permease are also regulated by these four regulatory proteins. Another group of genes whose expression is also regulated by Gln3, Gat1, Dal80, and Deh1 are some protease, CPS1, PRB1, LAP1, and PEP4, responsible for the degradation of proteins into amino acids thereby providing a nitrogen source to the cell.

In this review, all known promoter sequences related to expression of nitrogen catabolite pathways are discussed as well as other regulatory proteins. Overview of metabolic pathways and promotors are presented.

Index Entries

Saccharomyces cerevisiae nitrogen catabolite repression Gln3 Gat1 Dal80 Deh1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grenson, M. (1992) Amino acid transporters in yeast: structure, function and regulation. In Molecular aspects of transport proteins. (Edited by Neuberger A. and Van Deenen L. L. M.), p. 219–245. Elsevier Science Publishers B. V.,Google Scholar
  2. 2.
    Messenguy, F., Colin, D., and Ten Have, J.-P. (1980) Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effect on metabolic control. Eur. J. Biochem. 108, 439–447.PubMedGoogle Scholar
  3. 3.
    Mitchell, A. P. and Magasanik, B. (1983) Purification and properties of glutamine synthetase from Saccharomyces cerevisiae. J. Biol. Chem. 258, 119–124.PubMedGoogle Scholar
  4. 4.
    Mitchell, A. P. (1985) The GLN1 locus of Saccharomyces cerevisiae encodes glutamine synthetase. Genetics 111, 243–258.PubMedGoogle Scholar
  5. 5.
    Bogonez, E., Satrustegui, J. and Machado, A. (1985) Regulation by ammonium of glutamate dehydrogenase (NADP+) from Saccharomyces cerevisiae. J. Gen. Microbiol. 131, 1425–1432.PubMedGoogle Scholar
  6. 6.
    Avendano, A., Deluna, A., Olivera, H., Valenzuela, L., and Gonzalez, A. (1997) GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. J. Bacteriol. 179, 5594–5597.PubMedGoogle Scholar
  7. 7.
    Wilkinson, B. M., James, C. M., and Walmsley, R. M. (1996) Partial deletion of the Saccharomyces cerevisiae GDH3 gene results in novel starvation phenotypes. Microbiology. 142, 1667–1673.PubMedCrossRefGoogle Scholar
  8. 8.
    Miller, S. M. and Magasanik, B. (1990) Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J. Bacteriol. 172, 4927–4935.PubMedGoogle Scholar
  9. 9.
    Grenson, M., Dubois, E., Piotrowska, M., Drillien, R., and Aigle, M. (1974) Ammonia assimilation in Saccharomyces cerevisiae as mediated by the two glutamate dehydrogenases. Evidence for the gdhA locus being a structural gene for the NADP-dependent glutamate dehydrogenase. Mol. Gen. Genet. 128, 73–85.PubMedGoogle Scholar
  10. 10.
    Marini, A. M., Soussi Boudekou, S., Vissers, S., and Andre, B. (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol. Cell Biol. 17, 4282–4293.PubMedGoogle Scholar
  11. 11.
    Coschigano P.W., Miller S.M. and Magasanik B. (1991) Physiological and genetic analysis of the carbon regulation of the NAD-dependent glutamate dehydrogenase of Saccharomyces cerevisiae. Mol. Cell Biol. 11, 4455–4465.PubMedGoogle Scholar
  12. 12.
    Cooper T.G. (1982) Nitrogen metabolism in Saccharomyces cerevisiae. In The molecular biology of the yeast Saccharomyces: metabolism and gene expression. (Edited by Strathern J.N., Jones E.W. and Broach J.), p. 39–101.Google Scholar
  13. 13.
    Coffman J.A., Rai R., Loprete D.M., Cunningham T., Svetlov V. and Cooper T.G. (1997) Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. J. Bacteriol. 179, 3416–3429.PubMedGoogle Scholar
  14. 14.
    Bysani N., Daugherty J.R. and Cooper T.G. (1991) Saturation mutagenesis of the UASNTR (GATAA) responsible for nitrogen catabolite repression-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae. J. Bacteriol. 173, 4977–4982.PubMedGoogle Scholar
  15. 15.
    Cunningham T.S. and Cooper T.G. (1993) The Saccharomyces cerevisiae DAL80 repressor protein binds to multiple copies of GATAA-containing sequences (URSGATA). J. Bacteriol. 175, 5851–5861.PubMedGoogle Scholar
  16. 16.
    Cunningham T.S., Svetlov V.V., Rai R., Smart W. and Cooper T.G. (1996) Gln3p is capable of binding to UAS(NTR) elements and activating transcription in Saccharomyces cerevisiae. J. Bacteriol. 178, 3470–3479.PubMedGoogle Scholar
  17. 17.
    Minehart P.L. and Magasanik B. (1991) Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain. Mol. Cell Biol. 11, 6216–6228.PubMedGoogle Scholar
  18. 18.
    Blinder D. and Magasanik B. (1995) Recognition of nitrogen-responsive upstream activation sequences of Saccharomyces cerevisiae by the product of the GLN3 gene. J. Bacteriol. 177, 4190–4193.PubMedGoogle Scholar
  19. 19.
    Rai R., Genbauffe F.S., Sumrada R.A. and Cooper T.G. (1989) Identification of sequences responsible for transcriptional activation of the allantoate permease gene in Saccharomyces cerevisiae. Mol. Cell Biol. 9, 602–608.PubMedGoogle Scholar
  20. 20.
    Donahue, T. F., Daves, R. S., Lucchini, G., and Fink, G. R. (1983) A short nucleotide sequence required for regulation of HIS4 by the general control system of yeast. Cell 32, 89–98.PubMedGoogle Scholar
  21. 21.
    Sarokin, L. and Carlson, M. (1986) Short repeated elements in the upstream regulatory region of the SUC2 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 2324–2333.PubMedGoogle Scholar
  22. 22.
    Thiele, D. J. and Hamer, D. H. (1986) Tandemly duplicated upstream control sequences mediate copper-induced transcription of the Saccharomyces cerevisiae copper-metallothionein gene. Mol. Cell. Biol. 6, 1158–1163.PubMedGoogle Scholar
  23. 23.
    Rai, R., Daugherty, J. R., and Cooper, T. G. (1995) UASNTR functioning in combination with other UAS elements underlies exceptional patterns of nitrogen regulation in Saccharomyces cerevisiae. Yeast. 11, 247–260.PubMedGoogle Scholar
  24. 24.
    Magasanik, B. (1992) Regulation of nitrogen utilization. In The molecular and cellular biology of the yeast Saccharomyces. (Edited by Broach I., James R. and Pringle J.), p. 283. CSHL Press,Google Scholar
  25. 25.
    Stanbrough, M., Rowen, D. W., and Magasanik, B. (1995) Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc. Natl. Acad. Sci. U. S. A. 92, 9450–9454.PubMedGoogle Scholar
  26. 26.
    Svetlov, V. and Cooper, T. G. (1997) The minimal transactivation region of S. cerevisiae Gln3 is localized to 13 amino acids. J. Bacteriology 179, 7644–7652.Google Scholar
  27. 27.
    Miller, S. M. and Magasanik, B. (1991) Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae. Mol. Cell Biol. 11, 6229–6247.PubMedGoogle Scholar
  28. 28.
    Blinder, D., Coschigano, P. W., and Magasanik, B. (1996) Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae. J. Bacteriol. 178, 4734–4736.PubMedGoogle Scholar
  29. 29.
    Coffman, J. A., Rai, R. and Cooper, T. G. (1995) Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae. J. Bacteriol. 177, 6910–6918.PubMedGoogle Scholar
  30. 30.
    Coffman, J. A., el Berry, H. M., and Cooper, T. G. (1994) The URE2 protein regulates nitrogen catabolic gene expression through the GATAA-containing UASNTR element in Saccharomyces cerevisiae. J. Bacteriol. 176, 7476–7483.PubMedGoogle Scholar
  31. 31.
    Courchesne, W. E. and Magasanik, B. (1988) Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J. Bacteriol. 170, 708–713.PubMedGoogle Scholar
  32. 32.
    Coschigano, P. W. and Magasanik, B. (1991) The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione s-transferases. Mol. Cell Biol. 11, 822–832.PubMedGoogle Scholar
  33. 33.
    Coffman, J. A., Rai, R., Cunningham, T., Svetlov, V., and Cooper, T. G. (1996) Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 847–858.PubMedGoogle Scholar
  34. 34.
    Masison, D. C. and Wickner, R. B. (1995) Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270, 93–95.PubMedGoogle Scholar
  35. 35.
    Kushnirov, V. V., Ter Avanesian, M. D., and Smirno, V. N. (1995) [Structure and functional similarity of yeast Sup35p and Ure2p proteins to mammalian prions] Strukturnoe i funktsional’noe skhodstvo belkov Sup35p i Ure2p drozhzhei s prionami mlekopitaiushchikh. Mol. Biol. Mosk. 29, 750–755.PubMedGoogle Scholar
  36. 36.
    Cox, B. (1994) Cytoplasmic inheritance. Prion-like factors in yeast. Curr. Biol. 4, 744–748.PubMedGoogle Scholar
  37. 37.
    Weissmann, C. (1994) The prion connection: now in yeast? [comment]. Science 264, 528–530.PubMedGoogle Scholar
  38. 38.
    Wickner, R. B. (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae [see comments]. Science 264, 566–569.PubMedGoogle Scholar
  39. 39.
    Stanbrough, M. and Magasanik, B. (1995) Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae. J.Bacteriol. 177, 94–102.PubMedGoogle Scholar
  40. 40.
    Rowen, D. W., Esiobu, N., and Magasanik, B. (1997) Role of GATA factor Nil2p in nitrogen regulation of gene expression in Saccharomyces cerevisiae. J. Bacteriol. 179, 3761–3766.PubMedGoogle Scholar
  41. 41.
    Cunningham, T. S. and Cooper, T. G. (1991) Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression [published erratum appears in Mol Cell Biol 1992 May;12(5):2454]. Mol. Cell Biol. 11, 6205–6215.PubMedGoogle Scholar
  42. 42.
    Coornaert, D., Vissers, S., Andre, B., and Grenson, M. (1992) The UGA43 negative regulatory gene of Saccharomyces cerevisiae contains both a GATA-1 type zinc finger and a putative leucine zipper. Curr. Genet. 21, 301–307.PubMedGoogle Scholar
  43. 43.
    Daugherty, J. R., Rai, R., el Berry, H. M., and Cooper, T. G. (1993) Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae. J. Bacteriol. 175, 64–73.PubMedGoogle Scholar
  44. 44.
    Soussi Boudekou, S., Vissers, S., Urrestarazu, A., Jauniaux, J. C., and Andre, B. (1997) Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae. Mol. Microbiol. 23, 1157–1168.PubMedGoogle Scholar
  45. 45.
    Minehart, P. L. and Magasanik, B. (1992) Sequence of the GLN1 gene of Saccharomyces cerevisiae: role of the upstream region in regulation of glutamine synthetase expression. J. Bacteriol. 174, 1828–1836.PubMedGoogle Scholar
  46. 46.
    Mitchell, A. P. and Magasanik, B. (1984) Regulation of glutamine-repressible gene products by the GLN3 function in Saccharomyces cerevisiae. Mol. Cell Biol. 4, 2758–2766.PubMedGoogle Scholar
  47. 47.
    Benjamin, P. M., Wu, J. I., Mitchell, A. P., and Magasanik B. (1989) Three regulatory systems control expression of glutamine synthetase in Saccharomyces cerevisiae at the level of transcription. Mol. Gen. Genet. 217, 370–377.PubMedGoogle Scholar
  48. 48.
    Legrain, C., Vissers, S., Dubois, E., Legrain, M., and Wiame, J. M. (1982) Regulation of glutamine synthetase from Saccharomyces cerevisiae by repression, inactivation and proteolysis. Eur. J. Biochem. 123, 611–616.PubMedCrossRefGoogle Scholar
  49. 49.
    Mitchell, A. P. and Magasanik, B. (1984) Three regulatory systems control production of glutamine synthetase in Saccharomyces cerevisiae. Mol. Cell Biol. 4, 2767–2773.PubMedGoogle Scholar
  50. 50.
    Boles, E., Lehnert, W., and Zimmermann, F. K. (1993) The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. Eur. J. Biochem. 217, 469–477.PubMedGoogle Scholar
  51. 51.
    Luche, R. M., Sumrada, R., and Cooper, T. G. (1990) A cis-acting element present in multiple genes serves as a repressor protein binding site for the yeast CAR1 gene. Mol. Cell Biol. 10, 3884–3895.PubMedGoogle Scholar
  52. 52.
    Sumrada, R. A. and Cooper, T. G. (1987) Ubiquitous upstream repression sequences control activation of the inducible arginase gene in yeast. Proc. Natl. Acad. Sci. U. S. A. 84, 3997–4001.PubMedGoogle Scholar
  53. 53.
    Jauniaux, J. C. and Grenson, M. (1990) GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur. J. Biochem. 190, 39–44.PubMedGoogle Scholar
  54. 54.
    Hein, C. and Andre, B. (1997) A C-terminal di-leucine motif and nearby sequences are required for NH4(+)-induced inactivation and degradation of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae. Mol. Microbiol. 24, 607–616.PubMedGoogle Scholar
  55. 55.
    Hicke, L. and Riezman, H. (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84, 277–287.PubMedGoogle Scholar
  56. 56.
    Rohrer, J., Benedetti, H., Zanolari, B., and Riezman, B. (1993) Identification of a novel sequence mediating regulated endosytosis of the G protein-coupled alpha-pheromone receptor in yeast. Mol. Cell. Biol. 4, 511–521.Google Scholar
  57. 57.
    Grenson, M. and Acheroy, B. (1982) Mutations affecting the activity and the regulation of the general amino-acid permease of Saccharomyces cerevisiae. Localisation of the cis-acting dominant pgr regulatory mutation in the structural gene of this permease. Mol. Gen. Genet. 188, 261–265.PubMedGoogle Scholar
  58. 58.
    Grenson, M. (1983) Inactivation-reactivation process and repression of permease formation regulate several ammonia-sensitive permeases in the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 133, 135–139.PubMedGoogle Scholar
  59. 59.
    Hein, C., Springael, J. Y., Volland, C., Haguenauer Tsapis, R., and Andre, B. (1995) NP11, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol. Microbiol. 18, 77–87.PubMedGoogle Scholar
  60. 60.
    Galan, J. M., Moreau, V., Andre, B., Volland, C., and Haguenauer Tsapis, R. (1996) Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J. Biol. Chem. 271, 10946–10952.PubMedGoogle Scholar
  61. 61.
    Grenson, M. and Dubois, E. (1982) Pleiotropic deficiency in nitrogen-uptake systems and derepression of nitrogen-catabolic enzymes in npr-1 mutants of Saccharomyces cerevisiae. Eur. J. Biochem. 121, 643–647.PubMedGoogle Scholar
  62. 62.
    Grenson, M. (1983) Study of the positive control of the general amino-acid permease and other ammonia-sensitive uptake systems by the product of the NPR1 gene in the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 133, 141–144.PubMedGoogle Scholar
  63. 63.
    Vandenbol, M., Jauniaux, J. C., and Grenson, M. (1990) The Saccharomyces cerevisiae NPR1 gene required for the activity of ammonia-sensitive amino acid permeases encodes a protein kinase homologue. Mol. Gen. Genet. 222, 393–399.PubMedGoogle Scholar
  64. 64.
    Vandenbol, M., Jauniaux, J. C., Vissers, S., and Grenson, M. (1987) Isolation of the NPR1 gene responsible for the reactivation of ammonia-sensitive amino-acid permeases in Saccharomyces cerevisiae. RNA analysis and gene dosage effects. Eur. J. Biochem. 164, 607–612.PubMedGoogle Scholar
  65. 65.
    Courchesne, W. E. and Magasanik, B. (1983) Ammonia regulation of amino acid permeases in Saccharomyces cerevisiae. Mol. Cell Biol. 3, 672–683.PubMedGoogle Scholar
  66. 66.
    Sophianopoulou, V. and Diallinas, G. (1993) AUA1, a gene involved in ammonia regulation of amino acid transport in Saccharomyces cerevisiae. Mol. Microbiol. 8, 167–178.PubMedGoogle Scholar
  67. 67.
    Stanbrough, M. and Magasanik, B. (1996) Two transcription factors, Gln3p and Nil1p, use the same GATAAG sites to activate the expression of GAP1 of Saccharomyces cerevisiae. J. Bacteriol. 178, 2465–2468.PubMedGoogle Scholar
  68. 68.
    Coffman, J., Rai, R., Cunningham, T., Svetlov, V., and Cooper, T. G. (1996) NCR-sensitive transport gene expression in S. cerevisiae is controlled by a branched regulatory pathway consisting of multiple NCR-responsive activator proteins. Folia Microbiol. Praha. 41, 85–86.PubMedGoogle Scholar
  69. 69.
    Marini, A. M., Vissers, S., Urrestarazu, A., and Andre, B. (1994) Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J. 13, 3456–3463.PubMedGoogle Scholar
  70. 70.
    Bisson, L. F. (1991) Influence of nitrogen on yeast and fermentation of grapes. In International sympesium on nitrogen in grapes and wine. (Edited by Rantz J.), p. 78.Google Scholar
  71. 71.
    Brandriss, M. C. and Magasanik, B. (1979) Genetics and physiology of proline utilization in Saccharomyces cerevisiae: enzyme induction by proline. J. Bacteriol. 140, 498–503.PubMedGoogle Scholar
  72. 72.
    Marczak, J. E. and Brandriss, M. C. (1989) Isolation of constitutive mutations affecting the proline utilization pathway in Saccharomyces cerevisiae and molecular analysis of the PUT3 transcriptional activator. Mol. Cell Biol. 9, 4696–4705.PubMedGoogle Scholar
  73. 73.
    Wang, S. S. and Brandriss, M. C. (1986) Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT1 gene. Mol. Cell Biol. 6, 2638–2645.PubMedGoogle Scholar
  74. 74.
    Wang, S. S. and Brandriss, M. C. (1987) Proline utilization in Saccharomyces cerevisiae: sequence, regulation, and mitochondrial localization of the PUT1 gene product. Mol. Cell Biol. 7, 4431–4440.PubMedGoogle Scholar
  75. 75.
    Brandriss, M. C. (1983) Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT2 gene. Mol. Cell Biol. 3, 1846–1856.PubMedGoogle Scholar
  76. 76.
    Krzywicki, K. A. and Brandriss, M. C. (1984) Primary structure of the nuclear PUT2 gene involved in the mitochondrial pathway for proline utilization in Saccharomyces cerevisiae. Mol. Cell Biol. 4, 2837–2842.PubMedGoogle Scholar
  77. 77.
    Brandriss, M. C. and Krzywicki, K. A. (1986) Aminoterminal fragments of delta 1-pyrroline-5-carboxylate dehydrogenase direct beta-galactosidase to the mitochondrial matrix in Saccharomyces cerevisiae. Mol. Cell Biol. 6, 3502–3512.PubMedGoogle Scholar
  78. 78.
    Murakami, H., Pain, D., and Blobel, G. (1988) 70-kD heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria. J. Cell Biol. 107, 2051–2057.PubMedGoogle Scholar
  79. 79.
    Jauniaux, J. C., Vandenbol, M., Vissers, S., Broman, K., and Grenson, M. (1987) Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae. Cloning of the PUT4 gene and study of PUT4 RNA levels in wild-type and mutant strains. Eur. J. Biochem. 164, 601–606.PubMedGoogle Scholar
  80. 80.
    Vandenbol, M., Jauniaux, J. C., and Grenson, M. (1989) Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline- permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases. Gene 83, 153–159.PubMedGoogle Scholar
  81. 81.
    Brandriss, M. C. (1987) Evidence for positive regulation of the proline utilization pathway in Saccharomyces cerevisiae. Genetics 117, 429–435.PubMedGoogle Scholar
  82. 82.
    Marczak, J. E. and Brandriss, M. C. (1991) Analysis of constitutive and noninducible mutations of the PUT3 transcriptional activator. Mol. Cell Biol. 11, 2609–2619.PubMedGoogle Scholar
  83. 83.
    Siddiqui, A. H. and Brandriss, M. C. (1988) A regulatory region responsible for proline-specific induction of the yeast PUT2 gene is adjacent to its TATA box. Mol. Cell Biol. 8, 4634–4641.PubMedGoogle Scholar
  84. 84.
    Siddiqui, A. H. and Brandriss, M. C. (1989) The Saccharomyces cerevisiae PUT3 activator protein associates with proline-specific upstream activation sequences. Mol. Cell Biol. 9, 4706–4712.PubMedGoogle Scholar
  85. 85.
    Reece, R. J. and Ptashne, M. (1993) Determinants of binding-site specificity among yeast C6 zinc clusterproteins. Science 261, 909–911.PubMedGoogle Scholar
  86. 86.
    Marmorstein, A. (1992) Nature 356, 408–414.PubMedGoogle Scholar
  87. 87.
    des Etages, S. A., Falvey, D. A., Reece, R. J., and Brandriss, M. C. (1996) Functional analysis of the PUT3 transcriptional activator of the proline utilization pathway in Saccharomyces cerevisiae. Genetics 142, 1069–1082.PubMedGoogle Scholar
  88. 88.
    Axelrod, J. D., Majors, J., and Brandriss, M. C. (1991) Proline-independent binding of PUT3 transcriptional activator protein detected by footprinting in vivo. Mol. Cell Biol. 11, 564–567.PubMedGoogle Scholar
  89. 89.
    Yamashita, I. (1993) Isolation and characterization of the SUD1 gene, which encodes a global repressor of core promoter activity in Saccharomyces cerevisiae. Mol. Gen. Genet. 241, 616–626.PubMedGoogle Scholar
  90. 90.
    Rousselet, G., Simon, M., Ripoche, P., and Buhler J. M. (1995) A second nitrogen permease regulator in Saccharomyces cerevisiae. FEBS Lett. 359, 215–219.PubMedGoogle Scholar
  91. 91.
    Ramos, F., el Guezzar, M., Grenson, M., and Wiame, J. M. (1985) Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 149, 401–404.PubMedGoogle Scholar
  92. 92.
    Andre, B. and Jauniaux, J. C. (1990) Nucleotide sequence of the yeast UGA1 gene encoding GABA transaminase. Nucleic. Acids. Res. 18, 3049–3049.PubMedGoogle Scholar
  93. 93.
    Grenson, M., Muyldermans, F., Broman, K., and Vissers, S. (1987) 4-aminobutyric acid (GABA) uptake in Bakers yeast Saccharomyces cerevisiae is mediated by the general amino acid permease, the proline permease and a GABA-specifiec permease integrated into the GABA-catabolic pathway. Life. sci. adv. 6, 35–39.Google Scholar
  94. 94.
    Andre, B., Hein, C., Grenson, M., and Jauniaux, J. C. (1993) Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. Mol. Gen. Genet. 237, 17–25.PubMedGoogle Scholar
  95. 95.
    Andre, B. (1990) The UGA3 gene regulating the GABA catabolic pathway in Saccharomyces cerevisiae codes for a putative zinc-finger protein acting on RNA amount. Mol. Gen. Genet. 220, 269–276.PubMedGoogle Scholar
  96. 96.
    Evans and Hollenberg (1988) Gilt by association. Cell 52, 1–3.PubMedGoogle Scholar
  97. 97.
    Bricmont, P. A., Daugherty, J. R., and Cooper, T. G. (1991) The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae. Mol. Cell Biol. 11, 1161–1166.PubMedGoogle Scholar
  98. 98.
    Vissers, S., Andre, B., Muyldermans, F., and Grenson, M. (1990) Induction of the 4-aminobutyrate and urea-catabolic pathways in Saccharomyces cerevisiae. Specific and common transcriptional regulators. Eur. J. Biochem. 187, 611–616.PubMedGoogle Scholar
  99. 99.
    Cunningham, T. S., Dorrington, R. A., and Cooper, T. G. (1994) The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae. J. Bacteriol. 176, 4718–4725.PubMedGoogle Scholar
  100. 100.
    Talibi, D., Grenson, M. and Andre, B. (1995) Cis-and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae. Nucleic. Acids. Res. 23, 550–557.PubMedGoogle Scholar
  101. 101.
    van Vuuren, H. J., Daugherty, J. R., Rai, R., and Cooper, T. G. (1991) Upstream induction sequence, the cis-acting element required for response to the allantoin pathway inducer and enhancement of operation of the nitrogen-regulated upstream activation sequence in Saccharomyces cerevisiae. J. Bacteriol. 173, 7186–7195.PubMedGoogle Scholar
  102. 102.
    Yoo, H. S. and Cooper, T. G. (1989) The DAL7 promoter consists of multiple elements that cooperatively mediate regulation of the gene’s expression. Mol. Cell Biol. 9, 3231–3243.PubMedGoogle Scholar
  103. 103.
    Bricmont, P. A. and Cooper, T. G. (1989) A gene product needed for induction of allantoin system genes in Saccharomyces cerevisiae but not for their transcriptional activation. Mol. Cell Biol. 9, 3869–3877.PubMedGoogle Scholar
  104. 104.
    Cooper, T. G., Rai, R., and Yoo, H. S. (1989) Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae. Mol. Cell Biol. 9, 5440–5444.PubMedGoogle Scholar
  105. 105.
    Turoscy, V. and Cooper, T. G. (1982) Pleiotropic control of five eucaryotic genes by multiple regulatory elements. J. Bacteriol. 151, 1237–1246.PubMedGoogle Scholar
  106. 106.
    Olive, M. G., Daugherty, J. R., and Cooper, T. G. (1991) DAL82, a second gene required for induction of allantoin system gene transcription in Saccharomyces cerevisiae. J. Bacteriol. 173, 255–261.PubMedGoogle Scholar
  107. 107.
    Hennaut, C. (1981) L-ornithine transaminase synthesis in Saccharomyces Cerevisiae: induction by allophanate, intermediate and inducer of the urea degradative pathway adds to arginine induction. Curr. genet. 4, 69–72.Google Scholar
  108. 108.
    Vissers, S., Andre, B., Muyldermans, F., and Grenson, M. (1989) Positive and negative regulatory elements control the expression of the UGA4 gene coding for the inducible 4-aminobutyric-acid- specific permease in Saccharomyces cerevisiae. Eur. J. Biochem. 181, 357–361.PubMedGoogle Scholar
  109. 109.
    Andre, B., Talibi, D., Doudekou, S. S., Hein, C., Vissers, S., and Coornaert, D. (1995) Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5′-GAT(A/T)A-3′ upstream from the UGA4 gene of Saccharomyces cerevisiae. Nucleic. Acids. Res. 23, 558–564.PubMedGoogle Scholar
  110. 110.
    Sumrada, R. A. and Cooper, T. G. (1984) Nucleotide sequence of the Saccharomyces cerevisiae arginase gene (CAR1) and its transcription under various physiological conditions. J. Bacteriol. 160, 1078–1087.PubMedGoogle Scholar
  111. 111.
    Sumrada, R. A. and Cooper, T. G. (1982) Mol. Cell. Biol. 2, 1514–1523.PubMedGoogle Scholar
  112. 112.
    Degols, G. (1987) Functional analysis of the regulatory region adjacent to the cargB gene of Saccharomyces cerevisiae. Nucleotide sequence, gene fusion experiments and cis-dominant regulatory mutation analysis. Eur. J. Biochem. 169, 193–200.PubMedGoogle Scholar
  113. 113.
    Degols, G., Jauniaux, J. C., and Wiame, J. M. (1987) Molecular characterization of transposable-elementassociated mutations that lead to constitutive L-ornithine aminotransferase expression in Saccharomyces cerevisiae. Eur. J. Biochem. 165, 289–296.PubMedGoogle Scholar
  114. 114.
    Opekarova, M. and Kubin, J. (1997) On the unidirectionality of arginine uptake in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 152, 261–267.PubMedCrossRefGoogle Scholar
  115. 115.
    Opekarova, M., Caspari, T., and Tanner, W. (1993) Unidirectional arginine transport in reconstituted plasma-membrane vesicles from yeast overexpressing CAN1. Eur. J. Biochem. 211, 683–688.PubMedGoogle Scholar
  116. 116.
    Hoffmann, W. (1985) Molecular characterization of the CAN1 locus in Saccharomyces cerevisiae. A transmembrane protein without N-terminal hydrophobic signal sequence. J. Biol. Chem. 260, 11831–11837.PubMedGoogle Scholar
  117. 117.
    Cooper, T. G., Kovari, L., Sumrada, R. A., Park, H. D., Luche, R. M., and Kovari, I. (1992) Nitrogen catabolite repression of arginase (CAR1) expression in Saccharomyces cerevisiae is derived from regulated inducer exclusion. J. Bacteriol. 174, 48–55.PubMedGoogle Scholar
  118. 118.
    Hoffmann, W. (1987) CAN1-SUC2 gene fusion studies in Saccharomyces cerevisiae. Mol. Gen. Genet. 210, 277–281.PubMedGoogle Scholar
  119. 119.
    Kovari, L. Z., Kovari, I., and Cooper, T. G. (1993) Participation of RAP1 protein in expression of the Saccharomyces cerevisiae arginase (CAR1) gene. J. Bacteriol. 175, 941–951.PubMedGoogle Scholar
  120. 120.
    Kovari, L. Z. and Cooper, T. G. (1991) Participation of ABF-1 protein in expression of the Saccharomyces cerevisiae CAR1 gene. J. Bacteriol. 173, 6332–6338.PubMedGoogle Scholar
  121. 121.
    Kovari, L., Sumrada, R., Kovari, I., and Cooper, T. G. (1990) Multiple positive and negative cis-acting elements mediate induced arginase (CAR1) gene expression in Saccharomyces cerevisiae. Mol. Cell Biol. 10, 5087–5097.PubMedGoogle Scholar
  122. 122.
    Dubois, E. and Messenguy, F. (1997) Integration of the multiple controls regulating the expression of the arginase gene CAR1 of Saccharomyces cerevisiae in response to differentnitrogen signals: role of Gln3p, ArgRp-Mcm1p, and Ume6p. Mol. Gen. Genet. 253, 568–580.PubMedGoogle Scholar
  123. 123.
    Smart, W. C., Coffman, J. A., and Cooper, T. G. (1996) Combinatorial regulation of the Saccharomyces cerevisiae CAR1 (Arginase) promotor in response to multible environmental signals. Mol. Cell. Biol. 16, 5876–5887.PubMedGoogle Scholar
  124. 124.
    Bossinger, J. and Cooper, T. G. (1977) Molecular events associated with induction of arginase in Saccharomyces cerevisiae. J. Bacteriol. 131, 163–173.PubMedGoogle Scholar
  125. 125.
    Kovari, L. Z., Fourie, M., Park, H. D., Kovari, I. A., van Vuuren, H. J., and Cooper T. G. (1993) Analysis of the inducer-responsive CAR1 upstream activation sequence (UASI) and the factors required for its operation. Yeast. 9, 835–845.PubMedGoogle Scholar
  126. 126.
    Viljoen, M., Kovari, L. Z., Kovari, I. A., Park, H. D., van Vuuren, H. J., and Cooper, T. G. (1992) Tripartite structure of the Saccharomyces cerevisiae arginase (CAR1) gene inducer-responsive upstream activation sequence. J. Bacteriol. 174, 6831–6839.PubMedGoogle Scholar
  127. 127.
    Messenguy, F. (1991) Mol. Cell. Biol. 11, 2852–2863.PubMedGoogle Scholar
  128. 128.
    Messenguy, F. and Dubois, E. (1993) Genetic evidence for a role for MCM1 in the regulation of arginine metabolism in Saccharomyces cerevisiae. Mol. Cell Biol. 13, 2586–2592.PubMedGoogle Scholar
  129. 129.
    Cunin, R., Dubois, E., Tinel, K., and Crabeel, M. (1986) Positive and negative regulation of CAR1 expression in S. cerevisiae. Mol. Gen. Genet. 205, 170–175.Google Scholar
  130. 130.
    Shore and Sharrocks (1995) The MADS box family of transcription factors. Eur. J. Biochem. 229, 1–13.PubMedGoogle Scholar
  131. 131.
    Cooper, T. G., Ferguson, D., Rai, R., and Bysani, N. (1990) The GLN3 gene product is required for transcriptional activation of allantoin system gene expression in Saccharomyces cerevisiae. J. Bacteriol. 172, 1014–1018.PubMedGoogle Scholar
  132. 132.
    Sumrada, R. A. and Cooper, T. G. (1985) Point mutation generates constitutive expression of an inducible eukaryotic gene. Proc. Natl. Acad. Sci. U. S. A. 82, 643–647.PubMedGoogle Scholar
  133. 133.
    Deschamps, J., Dubois, E., and Wiame, J. M. (1979) L-Ornithine transaminase synthesis in Saccharomyces cerevisiae: regulation by inducer exclusion. Mol. Gen. Genet. 174, 225–232.PubMedGoogle Scholar
  134. 134.
    Kunzler, M., Springer, C., and Braus, G. H. (1995) Activation and repression of the yeast ARO3 gene by global transcription factors. Mol. Microbiol. 15, 167–178.PubMedGoogle Scholar
  135. 135.
    Carmen, A. A. and Holland, M. J. (1994) The upstream repression sequence from the yeast enolase gene ENO1 is a complex regulatory element that binds multiple trans-acting factors including REB1. J. Biol. Chem. 269, 9790–9797.PubMedGoogle Scholar
  136. 136.
    Strich, R., Surosky, R. T., Steber, C., Dubois, E., Messenguy, F., and Esposito, R. E. (1994) UME6 is a key regulator of nitrogen repression and meiotic development. Genes Dev. 8, 796–810.PubMedGoogle Scholar
  137. 137.
    Park, H. D., Luche, R. M., and Cooper, T. G. (1992) The yeast UME6 gene product is required for transcriptional repression mediated by the CAR1 URS1 repressor binding site. Nucleic. Acids. Res. 20, 1909–1915.PubMedGoogle Scholar
  138. 138.
    Luche, R. M., Smart, W. C. and Cooper, T. G. (1992) Purification of the heteromeric protein binding to the URS1 transcriptional repression site in Saccharomyces cerevisiae [published erratum appears in Proc Natl Acad Sci U S A 1992 Nov 15;89(22):11107]. Proc. Natl. Acad. Sci. U. S. A. 89, 7412–7416.PubMedGoogle Scholar
  139. 139.
    Luche, R. M., Smart, W. C., Marion, T., Tillman, M., Sumrada, R. A., and Cooper, T. G. (1993) Saccharomyces cerevisiae BUF protein binds to sequences participating in DNA replication in addition to those mediating transcriptional repression (URS1) and activation. Mol. Cell Biol. 13, 5749–5761.PubMedGoogle Scholar
  140. 140.
    Klug, A. and Rhodes, D. (1987) “Zinc fingers”: a novel protein motif for nucleic acid recognition. Trends biochem. sci. 12, 464–469.Google Scholar
  141. 141.
    Messenguy, F. and Dubois, E. (1983) Participation of transcriptional and post-transcriptional regulatory mechanisms in the control of arginine metabolism in yeast. Mol. Gen. Genet. 189, 148–156.PubMedGoogle Scholar
  142. 142.
    Jacobs, E., Dubois, E., Hennaut, C., and Wiame, J.-M. (1981) Positive regulatory elements involden in urea amidolyase and urea uptake induction in S. cerevisiae. Curr. genet. 4, 13–18.Google Scholar
  143. 143.
    Jacobs, E., Dubois, E., and Wiame, J. M. (1985) Regulation of ureaamidolyase synthesis in Saccharomyces cerevisiae, RNA analysis, and cloning of the positive regulatory gene DURM. Curr. Genet. 9, 333–339.PubMedGoogle Scholar
  144. 144.
    ElBerry, H. M., Majumdar, M. L., Cunningham, T. S., Sumrada, R. A., and Cooper, T. G. (1993) Regulation of the urea active transporter gene (DUR3) in Saccharomyces cerevisiae. J. Bacteriol. 175, 4688–4698.PubMedGoogle Scholar
  145. 145.
    Cooper, T. G. and Sumrada, R. (1975) Urea transport in Saccharomyces cerevisiae. J. Bacteriol. 121, 571–576.PubMedGoogle Scholar
  146. 146.
    Sumrada, R., Gorski, M., and Cooper, T. (1976) Urea transport-defective strains of Saccharomyces cerevisiae. J. Bacteriol. 125, 1048–1056.PubMedGoogle Scholar
  147. 147.
    Cooper, T. G., McKelvey, J., and Sumrada, R. (1979) Oxalurate transport in Saccharomyces cerevisiae. J. Bacteriol. 139, 917–923.PubMedGoogle Scholar
  148. 148.
    Genbauffe, F. S. and Cooper, T. G. (1986) Induction and repression of the urea amidolyase gene in Saccharomyces cerevisiae. Mol. Cell Biol. 6, 3954–3964.PubMedGoogle Scholar
  149. 149.
    Dorrington, R. A. and Cooper, T. G. (1993) The DAL82 protein of Saccharomyces cerevisiae binds to the DAL upstream induction sequence (UIS). Nucleic. Acids. Res. 21, 3777–3784.PubMedGoogle Scholar
  150. 150.
    Chisholm, G. E. and Cooper, T. G. (1992) Ty insertions upstream and downstream of native DUR1,2 promoter elements generate different patterns of DUR1,2 expression in Saccharomyces cerevisiae. J. Bacteriol. 174, 2548–2559.PubMedGoogle Scholar
  151. 151.
    Chisholm, V. T., Lea, H. Z., Rai, R., and Cooper, T. G. (1987) Regulation of allantoate transport in wildtype and mutant strains of Saccharomyces cerevisiae. J. Bacteriol. 169, 1684–1690.PubMedGoogle Scholar
  152. 152.
    Hartig, A., Simon, M. M., Schuster, T., Daugherty, J. R., Yoo, H. S., and Cooper, T. G. (1992) Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae. Nucleic. Acids. Res. 20, 5677–5686.PubMedGoogle Scholar
  153. 153.
    Sumrada, R., Zacharski, C. A., Turoscy, V., and Cooper, T. G. (1978) Induction and inhibition of the allantoin permease in Saccharomyces cerevisiae. J. Bacteriol. 135, 498–510.PubMedGoogle Scholar
  154. 154.
    Yoo, H. S., Cunningham, T. S., and Cooper, T. G. (1992) The allantoin and uracil permease gene sequences of Saccharomyces cerevisiae are nearly identical. Yeast. 8, 997–1006.PubMedGoogle Scholar
  155. 155.
    Sumrada, R. and Cooper, T. G. (1974) Oxaluric acid: a non-metabolizable inducer of the allantoin degradative enzymes in Saccharomyces cerevisiae. J. Bacteriol. 117, 1240–1247.PubMedGoogle Scholar
  156. 156.
    Cooper, T. G., Chisholm, V. T., Cho, H. J., and Yoo, H. S. (1987) Allantoin transport in Saccharomyces cerevisiae is regulated by two induction systems. J. Bacteriol. 169, 4660–4667.PubMedGoogle Scholar
  157. 157.
    Rai, R., Genbauffe, F. S., and Cooper, T. G. (1988) Structure and transcription of the allantoate permease gene (DAL5) from Saccharomyces cerevisiae. J. Bacteriol. 170, 266–271.PubMedGoogle Scholar
  158. 158.
    Rai, R., Genbauffe, F., Lea, H. Z., and Cooper, T. G. (1987) Transcriptional regulation of the DAL5 gene in Saccharomyces cerevisiae. J. Bacteriol. 169, 3521–3524.PubMedGoogle Scholar
  159. 159.
    Buckholz, R. G. and Cooper, T. G. (1991) The allantoinase (DAL1) gene of Saccharomyces cerevisiae [published erratum appears in Yeast 1992 Mar;8(3):239]. Yeast. 7, 913–923.PubMedGoogle Scholar
  160. 160.
    Yoo, H. S. and Cooper, T. G. (1991) Sequences of two adjacent genes, one (DAL2) encoding allantoicase and another (DCG1) sensitive to nitrogen-catabolite repression in Saccharomyces cerevisiae. Gene 104, 55–62.PubMedGoogle Scholar
  161. 161.
    Yoo, H. S. and Cooper, T. G. (1991) The ureidoglycollate hydrolase (DAL3) gene in Saccharomyces cerevisiae. Yeast. 7, 693–698.PubMedGoogle Scholar
  162. 162.
    Yoo, H. S., Genbauffe, F. S., and Cooper, T. G. (1985) Identification of the ureidoglycolate hydrolase gene in the DAL gene cluster of Saccharomyces cerevisiae. Mol. Cell Biol. 5, 2279–2288.PubMedGoogle Scholar
  163. 163.
    Fernandez, E., Fernandez, M., and Rodicio, R. (1993) Two structural genes are encoding malate synthase isoenzymes in Saccharomyces cerevisiae. FEBS Lett. 320, 271–275.PubMedGoogle Scholar
  164. 164.
    Spormann, D. O., Heim, J., and Wolf, D. H. (1991) Carboxypeptidase yscS: gene structure and function of the vacuolar enzyme. Eur. J. Biochem. 197, 339–405.Google Scholar
  165. 165.
    Bordallo, j., Bordallo, c., Gascon, S., and Suarez-Rendueles, P. (1991) Molecular cloning and sequencing of genomic DNA encoding yeast vacuolar carboxypeptidase yscS. FEBS Lett. 283, 27–32.PubMedGoogle Scholar
  166. 166.
    Bordallo, J. and Suarez-Rendueles, P. (1995) Cis and trans-acting regulatory elements required for regulation of the CPS1 gne in Saccharomyces cerevisiae. Mol. Gen. Genet. 246, 580–589.PubMedGoogle Scholar
  167. 167.
    Coffman, J. A. and Cooper, T. G. (1997) Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae. J. Bacteriol. 179, 5609–5613.PubMedGoogle Scholar
  168. 168.
    Naik, R. R., Nebes, V., and Jones, E. W. (1997) Regulation of the peptidase B structual gene PRB1 in Saccharomyces cerevisiae. J. Bacteriology 179, 1469–1474.Google Scholar
  169. 169.
    Cueva, R., Garcia-Alvarez, N., and Suarez-Rendueles, P. (1989) Yeast vacuolar aminopeptidase yscI. isolation and regulation of the APE1(LAP4) structual gene. FEBS Lett. 259, 125–129.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1999

Authors and Affiliations

  1. 1.Department of BiotechnologyThe Technical University of Denmark, IBTLyngbyDenmark

Personalised recommendations