Skip to main content
Log in

Toward more efficient protein expression

Keep the message simple

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Optimization of gene coding-sequence, including preferred codon usage and removal of cryptic splice sites and mRNA-destabilizing motifs, has been shown to improve recombinant protein production of different proteins. Here, we present data to show that gene optimization can also be used to improve the production of a complex macromolecule, namely an antibody. When applied to the heavy and light chain genes of our model antibody, we found that greater numbers of high-producing transfectants as well as increased levels of protein production were observed (≈1.5-fold). In this test model, production was improved even though the antibody has previously been demonstrated to give high expression in stably transfected cells (up to 5 g/L in bioreactors). Because the parental heavy chain sequence contained introns, and the process of gene optimization is most efficiently performed on sequences without introns, we demonstrated that removal of introns in the coding sequence had no effect on the quantity of antibody produced. All constructs were evaluated using Lonza's glutamine synthetase gene expression vectors in Chinese hamster ovary cells. Our findings suggest that significant improvements in product yields can be achieved by gene optimization, which may facilitate the processing and translation of gene transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birch, J. R., Mainwaring, D. O., and Racher, A. J. (2005), Use of the glutamine synthetase (GS) expression system for the rapid development of highly productive mammalian cell processes, in Modern Biopharmaceuticals (Knäblein, J., ed.) WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim, pp. 809–832.

    Google Scholar 

  2. Rotondaro, L., Mele, A., and Rovera, G., (1996), Efficiency of different viral promoters in directing gene expression in mammalian cells: effect of 3′-untranslated sequences. Gene 168, 195–198.

    Article  PubMed  CAS  Google Scholar 

  3. Angelichio, M. L., Beck, J. A., Johansen, H., and Ivey-Hoyle, M. (1991), Comparison of several promoters and polyadenylation signals for use in heterologous gene expression in cultured Drosophila cells. Nucleic Acids Res. 19, 5037–5043.

    Article  PubMed  CAS  Google Scholar 

  4. Xu, Z. L., Mizuguchi, H., Ishii-Watabe, A., Uchida, E., Mayumi, T., and Hayakawa, T. (2002), Strength evaluation of transcriptional regulatory elements for transgene expression by adenovirus vector. J. Control Release 81, 155–163.

    Article  PubMed  CAS  Google Scholar 

  5. Kim, D., Kim, J. D., Baek, K., Yoon, Y., and Yoon, J. (2003) Improved mammalian expression systems by manipulating transcriptional termination regions. Biotechnol. Prog. 19, 1620–1622.

    Article  PubMed  CAS  Google Scholar 

  6. Benton, T., Chen, T., McEntee, M., et al. (2002) The use of UCOE vectors in combination with a preadapted serum free, suspension cell line allows for rapid production of large scale quantities of protein. Cytotechnol. 38, 43–46.

    Article  CAS  Google Scholar 

  7. Kim, J.-M., Kim, J.-S., Park, D.-H., et al. (2004) Improved recombinant gene expression in CHO cells using matrix attachment regions. J. Biotechnol. 107, 95–105.

    Article  PubMed  CAS  Google Scholar 

  8. Girod, P.-A., Zahn-Zabal, M., and Mermod, N. (2005), Use of the chicken lysozyme 5′ matrix attachement region to generate high producer CHO cell lines. Biotechnol. Bioeng. 5, 1–11.

    Article  Google Scholar 

  9. Kalwy, S., Rance, J., Norman, A, and Gay, R. (2005) Towards stronger gene expression: a promoter's story. Proc. 19th ESACT Meeting, in press. AU please update ref. 9

  10. Smales, C. M., Dinnis, D. M., Stansfield, S. H., et al. (2004) Comparative proteomic analysis of GS-NS0 murine myeloma cell lines with varying recombinant monoclonal antibody production rate. Biotechnol. Bioeng., 88, 474–488.

    Article  PubMed  CAS  Google Scholar 

  11. Barnes, L. M., Bentley, C. M., and Dickson, A. J. (2004), Molecular definition of predictive indicators of stable protein expression in recombinant NS0 myeloma cells. Biotechnol. Bioeng. 85, 115–121.

    Article  PubMed  CAS  Google Scholar 

  12. Kim, N. S., Kim, S. J., and Lee, G. M. (1998). Clonal variability within dihydrofolate reductase-mediated gene amplified Chinese hamster ovary cells: stability in the absence of selective pressure. Biotechnol. Bioeng. 60, 679–688.

    Article  PubMed  CAS  Google Scholar 

  13. Dinnis, D. M. and James, D. C. (2005), Engineering mammalian cell factories for improved recombinant monoclonal antibody production: lessons from nature? Biotechnol. Bioeng. 91, 180–189.

    Article  PubMed  CAS  Google Scholar 

  14. Proudfoot, N. J., Furger, A., and Dye, M. J. (2002) Integrating mRNA processing with transcription. Cell 108, 501–512.

    Article  PubMed  CAS  Google Scholar 

  15. Haussler, D. (1998) Computational genefinding. Trends Biochem. Sci. Suppl, 12–15.

  16. Degroeve, S., De Baets, B., Van de Peer, Y., and Rouzé, P. (2002), Feature subsets selection for splice site prediction. Bioinformatics 18, S75-S83.

    PubMed  Google Scholar 

  17. Lacy-Hulbert, A., Thomas, R., Li, X. P., Lilley, C. E., Coffin, R. S., and Roes, J. (2001) Interruption of coding sequences by heterologous introns can enhance the functional expression of recombinant genes. Gene Ther. 8, 649–653.

    Article  PubMed  CAS  Google Scholar 

  18. Graf, F., Deml, L., and Wagner, R. (2004) Codon-optimized genes that enable increased heterologous expression in mammalian cells and elicit efficient immune responses in mice after vaccination of naked DNA. Methods Mol. Med. 94, 197–210.

    PubMed  CAS  Google Scholar 

  19. Wand, S., Farfan-Arribas, D.J., Shen, S., et al., (2006). Relative contributions of codon usage, promoter efficiency and leader sequence to the antigen expression and immunogenicity of HIV-1 Env DNA vaccine. Vaccine 24, 4531–4540.

    Article  Google Scholar 

  20. Scholten, K. B., Kramer, D., Kueter, E. W., et al. (2006) Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin. Immunol. 119, 135–145.

    Article  PubMed  CAS  Google Scholar 

  21. Whittle, N., Adair, J., Lloyd, C., et al. (1987) Expression in COS cells of a mouse-human chimaeric B72.3 antibody. Protein Eng. 1 499–505.

    Article  PubMed  CAS  Google Scholar 

  22. Bebbington, C. R., Renner, G., Thomson, D., King, D., Abrams, D., and Yarranton, G. T. (1992) Highlevel expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Bio. Technol. 10, 169–175.

    CAS  Google Scholar 

  23. Schlatter S., Stansfield, S. H., Dinnis, D. M., Racher, A. J., Birch, J. R., and James, D. C. (2005), On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol. Prog. 21, 122–133.

    Article  PubMed  CAS  Google Scholar 

  24. Yoo, E. H., Chintalacharuvu, K. R., Penichet, M. L., and Morrison, S. L. (2002) Myeloma expression systems. J. Immunol. Methods 261, 1–20.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Kalwy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalwy, S., Rance, J. & Young, R. Toward more efficient protein expression. Mol Biotechnol 34, 151–156 (2006). https://doi.org/10.1385/MB:34:2:151

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:34:2:151

Index Entries

Navigation