Skip to main content
Log in

A new look at xylanases

An overview of purification strategies

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Interest in xylanases from different sources has increased markedly in the past decade, in part because of the application of these enzymes in the pulp and paper industry. Purity and purification costs are becoming important issues in modern biotechnology as the industry matures and competitive products reach the marketplace. Thus, new paths for successful and efficient xylanase recovery have to be followed.

This article reviews the isolation and purification methods used for the recovery of microbial xylanases. Origins and applications of xylanases are described, highlighting the special features of this class of enzymes, such as the carbohydrate-binding domains (CBDs) and their importance in the development of affinity methodologies to increase and facilitate xylanase purification. Implications of recombinant DNA technology for the isolation and purification of xylanases are evaluated. Several purification procedures are analyzed, taking into consideration the sequence of the methods used in each and the number of times each method is used. New directions to improve xylanase separation and purification from fermentation media are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomson, J.A. (1993) Molecular biology of xylan degradation. FEMS Microbiol. Lett. 104, 65–82.

    Article  CAS  Google Scholar 

  2. Bhat, M.K. (2000) Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18, 355–383.

    Article  PubMed  CAS  Google Scholar 

  3. Subramaniyan, S., and Prema, P. (2000) Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183, 1–7.

    Article  PubMed  CAS  Google Scholar 

  4. Shimada, K., Karita, S., Sakka, K., and Ohmiya, K. (1994) Cellulases, xylanases and their genes from bacteria. In: Recombinant microbes from industrial and agricultural application. (Murooka, Y. and T. Imanaka, eds.). Marcel Dekke, New York. pp. 395–429.

    Google Scholar 

  5. Jeffries, T.W. (1996) Biochemistry and genetics of microbial xylanases. Curr. Opin. Biotechnol. 7, 337–342.

    Article  PubMed  CAS  Google Scholar 

  6. Uffen, R.L. (1997) Xylan degradation, a glimpse at microbial diversity. J. Ind. Microb. Biotechnol. 19, 1–6.

    Article  CAS  Google Scholar 

  7. Karita, S., Sakka, K., Ohmiya, K., and Kimura, T. (1997) Structure of cellulases and their applications. Biotechnol. Genet. Engineer. Rev. 14 (13), 365–414.

    Google Scholar 

  8. Viikari, L., Kantelinen, A., Sundquist, J., and Linko, M. (1994) Xylanases in bleaching. From an idea to the industry. FEMS Microbiol. Rev. 13, 335–350.

    Article  CAS  Google Scholar 

  9. Kirk, T.K. and Jeffries, T.W. (1996) Roles for microbial enzymes in pulp and paper processing. In: Enzymes for Pulp and Paper Processing. American Chemical Society, Washindton, DC, pp. 2–14.

    Google Scholar 

  10. Gilbert, H.J. and Hazlewood, J.P. (1993) Bacterial cellulases and xylanases. J. Gen. Microbiol. 139, 187–194.

    CAS  Google Scholar 

  11. Coughlan, M.P. and Hazlewood, G.P. (1993) β-1,4-d-xylan degrading enzyme systems, biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17, 259–289.

    PubMed  CAS  Google Scholar 

  12. Jeong, K.J., Park, I.Y., Kim, M.S., and Kim, S.C. (1998) High-level expression of an endoxylanase gene from Bacillus sp. in Bacillus subtilis DB104 for the production of xylobiose from xylan. Appl. Microbiol. Biotechnol. 50, 113–118.

    Article  PubMed  CAS  Google Scholar 

  13. Lopéz-Fernández, C.L., Rodríguez, J., Ball, A.S., Patiño, J.L.C., Leblic, M.I.P., and Arias, M.E. (1998) Application of the affinity binding of xylanases to oat spelt xylan in the purification of endoxylanase CM 2 from Streptomyces chattanoogensis CECT 3336 Appl. Microbiol. Biotechnol. 50, 284–287.

    Google Scholar 

  14. Sun, J.L., Kimura, T., Karita, S., Sakka, K., and Ohmiya, K. (1998) Adsorption of Clostridium stercorarium xylanase and the importance of the CDBs to xylan hydrolysis. J. Ferment. Bioeng. 85(1), 63–68.

    Article  CAS  Google Scholar 

  15. Ratanakhanokchai, K., Kyu, K.L., and Tanticharoen, M. (1999) Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65(2), 694–697.

    PubMed  CAS  Google Scholar 

  16. Henrissat, B. and Bairoch, A. (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293(Pt 3), 781–788.

    PubMed  CAS  Google Scholar 

  17. Henrissat, B. and Bairoch, A. (1996) Updating the sequence based classification of glycosyl hydrolases. Biochem. J. 316, 695–696.

    PubMed  Google Scholar 

  18. Withers, S.G. (2001) Mechanisms of glycosyl transferases and hydrolases. Carbohydr. Polym. 44, 325–337.

    Article  CAS  Google Scholar 

  19. Kulkarni, N., Shendye, A., and Rao, M. (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23, 411–456.

    Article  PubMed  CAS  Google Scholar 

  20. Biely, P., Vrsanská, M., Tenkanen, M., Kluepfel, D. (1997) Endo-β-xylanase families, differences in catalytic properties. J. Biotechnol. 57, 151–166.

    Article  PubMed  CAS  Google Scholar 

  21. Saraswat, V. and Bisaria, V.S. (2000) Purification and substrate specificities of xylanase isoenzymes from Melanocarpus albomyces IIS 68. Biosci. Biotechnol. Biochem. 64(6), 1173–1180.

    Article  PubMed  CAS  Google Scholar 

  22. Li, K., Azadi, P., Collins, R., Tolan, J., Kim, J.S., and Eriksson, K.E.L. (2000) Relationships between activities of xylanases and xylan structure. Enzyme Microb. Technol. 27, 89–94.

    Article  Google Scholar 

  23. Wong, K.K.Y., Tan, L.U.L., and Saddler, J.N. (1988) Multiplicity of β-1,4-xylanase in microorganisms. Functions and applications. Microbiol. Rev. 52 (3), 305–317.

    PubMed  CAS  Google Scholar 

  24. Elegir, G., Szakács, G., and Jeffries, T.W. (1994) Purification, characterization and substrate specificities of multiple xylanases from Streptomyces sp. strain B12-2. Appl. Environ. Microbiol0. 60(7), 2609–2615.

    CAS  Google Scholar 

  25. Fontes, C.M.G.A., Hazlewood, G.P., Morag, E., Hall, J., Hirst, B.H., and Gilbert, H.J. (1995) Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophylic bacteria. Biochem. J. 307, 151–158.

    PubMed  CAS  Google Scholar 

  26. Chen, X., Whitmire, D., and Bowen, J.P. (1996) Xylanase homology modelling using the inverse protein folding approach. Protein Sci. 5, 705–708.

    PubMed  Google Scholar 

  27. Joshi, M.D., Hedberg, A., and Mcintosh, L.P. (1997) Complete measurement of the pKa values of the carboxyl and imidazole groups in Bacillus circulans xylanase. Protein Sci. 6, 2667–2670.

    PubMed  CAS  Google Scholar 

  28. See additional information in the Brookhaven Protein Data Bank http://www.rcsb.org/pdb/.

  29. Sá-Pereira, P., Costa-Ferreira, M., and Aires-Barros, M.R. (2002) Enzymatic properties of a neutral endo-1,3(4)-β-xylanase Xyl II from Bacillus subtilis. J. Biotechnol. 94, 65–275.

    Article  Google Scholar 

  30. Sá-Pereira, P., Ribeiro, B., Costa-Ferreira, M., and Aires-Barros, M.R. (2002) A new bacterial alkaline endo-1,3(4)-β-xylanase, Xyl I, with laminarase activity from Bacillus subtilis strain CCMI 966. J. Biotechnol. (submitted)

  31. Sunna, A., Puls, J., and Antranikian, G. (1996) Purification and characterization of two thermostable endo-β-xylanases from Thermotoga thermarum. Biotechnol. Appl. Biochem. 24, 177–185.

    CAS  Google Scholar 

  32. Shao, W., DeBlois, S., and Wiegel, J. (1995) A high-molecular-weight, cell-associated xylanase isolated from exponentially growing Thermoanaeobacterium sp. strain JW/SL-YS485. Appl. Environ. Microbiol. 61, 937–940.

    PubMed  CAS  Google Scholar 

  33. Wassenberg, D., Schurig, H., Liebl, W., and Jaenicke, R. (1997) Xylanase Xyn A from the bacterium Thermotoga maritima: Structure and stability of the recombinant enzyme and its isolated cellulose-binding domain. Protein Sci. 6, 1718–1726.

    PubMed  CAS  Google Scholar 

  34. Marrone, L., McAllister, K.A., and Clarke, A.J. (2000) Characterization of function and activity of domains A, B and C of xylanase C from Fibrobacter succinogenes S85. Protein Eng. 13, 593–601.

    Article  PubMed  CAS  Google Scholar 

  35. Black, G.W., Rixon, J.E., Clarke, J.H., Hazlewood, G.P., Ferreira, L.M.A., Bolam, D.N., and Gilbert, H.J. (1997) Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates. J. Biotechnol. 57, 59–69.

    Article  PubMed  CAS  Google Scholar 

  36. Charnoc, S.J., Spurway, T.D., Xie, H., Beylot, M.-H., Virden, R., Warren, R.A.J., Hazlewood, G.P., and Gilbert, H.J. (1998) The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. J. Biol. Chem. 273, 32187–32199.

    Article  Google Scholar 

  37. Rixon, J.E., Clarke, J.H., Hazlewood, G.P., Hoyland, R.W., McCarthy, A.J., and Gilbert, H.J. (1996) Do the non-catalytic polysaccharide-binding domains and linker regions enhance the biobleaching properties of modular xylanases? Appl. Microbiol. Biotechnol. 46, 514–520.

    Article  PubMed  CAS  Google Scholar 

  38. Fontes, C.M.G.A., Gilbert, H.J., Hazlewood, G.P., et al. (2000) A novel Cellvibrio mixtus family 10 xylanase that is both intracellular and expressed under non-inducing conditions. Microbiol. 146, 1959–1967.

    CAS  Google Scholar 

  39. Carrard, G., Koivula, A., Söderlund, H., and Béguin, P. (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose Proc. Natl Acad. Sci. USA. 97, 10342–10347.

    Article  PubMed  CAS  Google Scholar 

  40. Lymar, E.S., Li, B., and Reganathan, V. (1995) Purification and characterization of cellulose-binding β-glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium. Appl. Environ. Microbiol. 61, 2976–2980.

    PubMed  CAS  Google Scholar 

  41. Tomme, P., Boraston, A., Kormos, J. M., Warren, R.A.J., and Kilburn, D.G. (2000) Affinity electro-phoresis for the identification and characterization of soluble sugar binding by carbohydrate-binding modules. Enzyme Microb. Technol. 27, 453–458.

    Article  CAS  PubMed  Google Scholar 

  42. Tomme, P., Warren, R.A., Miller, R.C., Jr., Kilburn, D.G., and Gilkes, N.R. (1995) Cellulose-binding domains: classification and properties In: Enzymatic Degradation of Insoluble Polysaccharides (Saddler, J.N. and Penner, M., eds.), pp. 142–163.

  43. See additional information in the URL: http://afmb.cnrs-mrs.fr/~cazy/CAZY/CBD_22.html)

  44. Huddleston, J. and Lyddiatt, A. (1990) Aqueous two-phase systems in biochemical recovery. Systematic analysis, design, and implementation of practical processes for the recovery of proteins. Appl. Biochem. Biotechnol. 26, 249–279.

    CAS  Google Scholar 

  45. Nath, D. and Rao, M. (2001) pH dependent conformational and structural changes of xylanase from an alkalophilic thermophilic Bacillus sp. (NCIM 59). Enzyme Microb. Technol. 28, 397–403.

    Article  CAS  PubMed  Google Scholar 

  46. Beg, Q.K., Kapoor, M., Mahajan, L., and Hoondal, G.S. (2001) Microbial xylanases and their industrial applications, a review. Appl. Microbiol. Biotechnol. 56, 326–338.

    Article  PubMed  CAS  Google Scholar 

  47. Colacino, F. and Crichton, R.R. (1997) Enzyme thermostabilization. The state of the art. Biotechnol. Genet. Eng. Rev. 14, 211–277.

    CAS  Google Scholar 

  48. Kumar, S., Tasi, C.-J., and Nussinov, R. (2000) Factors enhancing protein thermostability. Protein Eng. 13, 179–191.

    Article  PubMed  CAS  Google Scholar 

  49. Li, Y., Coutinho, P.M., and Ford, C. (1998) Effect on thermostability and catalytic activity of introducing disulfide bonds into Aspergillus awamori glucoamylase. Protein Eng. 11, 661–668.

    Article  PubMed  CAS  Google Scholar 

  50. Turunen, T., Etuaho, K., Enel, R., Vehmaanperä, J., Wu, X., Rouvinen, J., and Leisola, M. (2001) A combination of weakly stabilizing mutations with a disulfide bridge in the α-region of Trichoderma reesei endo-1,4-β-xylanase II increases the thermal stability through synergism. J. Biotechnol. 88, 37–46.

    Article  PubMed  CAS  Google Scholar 

  51. Deshpande, V., Hinge, J., and Rao, M. (1990) Chemical modification of xylanases, evidence for essential tryptophan and cysteine residues at the active site. Biochim. Biophys. Acta. 1041, 172–177.

    PubMed  CAS  Google Scholar 

  52. Angelo, R., Aguirre, C., Curotto, E., Esposito, E., Fontana, J.D., Baron, M., Milagres, A.M.F., and Duran, N. (1997) Stability and chemical modification of xylanase from Aspergillus sp. (2MI strain). Biotechnol. Appl. Biochem. 25, 19–27.

    PubMed  CAS  Google Scholar 

  53. Lenders, J.-P. and Crichton, R.R. (1984) Thermal stabilization of amylolytic enzymes by covalent coupling to soluble polysaccharides. Biotechnol. Bioeng. 26, 1343–1351.

    Article  CAS  PubMed  Google Scholar 

  54. Singh, S., Pillay, B., and Prior, B.A. (2000) Thermal stability of β-xylanases produced by different Thermomyces lanuginosus strains. Enzyme Microb. Technol. 26, 502–508.

    Article  CAS  PubMed  Google Scholar 

  55. Park, M.T., Lee, M.S., Choi, J.Y., Kim, S.C., and Lee, G.M. (2001) Orthophosphate anion enhances the stability and activity of endoxylanase from Bacillus sp. Biotechnol. Bioeng. 72, 434–440.

    Article  PubMed  CAS  Google Scholar 

  56. Carninci, P., Nishiyama, Y., Westover, A., et al. (1998) Thermostabilization and thermoactivation of thermolabile enzymes by trehalose and its application for the synthesis of full length cDNA. Proc. Natl. Acad. Sci. USA 95, 520–524.

    Article  PubMed  CAS  Google Scholar 

  57. Hristov, A.N., Ivan, M., Rode, L.M., McAllister, T.A. (2001) Fermentation characteristics and ruminal ciliate protozoal populations in cattle fed medium or high concentrate barley based diets. J. Anim Sci. 79, 515–524.

    PubMed  CAS  Google Scholar 

  58. Lee, S.S., Ha, J.K., and Cheng, K. (2000) Relative contributions of bacteria, protozoa and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl. Environ. Microbiol. 66, 3807–3813.

    Article  PubMed  CAS  Google Scholar 

  59. Devillard, E., Newbold, C.J., Scott, K.P., et al. (1999) A xylanase produced by the rumen anaerobic protozoan Polyplastron multivesiculatum shows close sequence similarity to family 11 xylanases from gram positive bacteria. FEMS Microbiol. Lett. 181, 145–152.

    Article  PubMed  CAS  Google Scholar 

  60. Cosgrove, D.J. (1999) Enzymes and other agents that enhance cell wall extensibility. Annu. Ver. Plant Physiol. Plant Mol. Biol. 50, 391–417.

    Article  CAS  Google Scholar 

  61. Banik, M., Garret, T.P., and Fincher, G.B. (1996) Molecular cloning of cDNAs encoding (1,4)-β-xylan endohydrolases from the aleurone layer of germinated barley (Hordeum vulgare). Plant Mol. Biol. 31(6), 1163–1172.

    Article  PubMed  CAS  Google Scholar 

  62. Banik, M., Li, C.D., Langridge, P., and Fincher, G.B. (1997) Structure, hormonal regulation, and chromosomal location of genes encoding barley (1,4)-β-xylan endohydrolases. Mol. Gen. Genet. 253, 599–608.

    Article  PubMed  CAS  Google Scholar 

  63. See additional information in URL: http://www.ifrn.bbsrc.ac.uk/phytochemicals/Phy-Enzymo-sect3.htm.

  64. Duarte, J.C. and Costa-Ferreira, M. (1994) Aspergilli and lignocellulosics, Enzymology and biotechnological applications FEMS Microbiol. Rev. 13, 377–386.

    CAS  Google Scholar 

  65. See additional information in URL: http://www.uoguelph.ca/botany/seedlab/lab.htm

  66. 578Abs Girard, C., and Jouanin, L. (1999) Molecular cloning of cDNAs encoding a range of digestive enzymes from a phytophagous beetle, Phaedon cochleariae Insect Biochem Mol. Biol. 29, 1129–1142.

    Google Scholar 

  67. Matoub, M. and Rouland, C. (1995) Purification and properties of the xylanases of the termite Macrotermes bellicosus and its symbiotic fungus Termitomyces sp. Comp. Biochem. Physiol. 112, 629–635.

    CAS  Google Scholar 

  68. Turkiewicz, M., Kalinowska, H., Zielinska, M., and Bielecki, S. (2000) Purification and characterization of two endo-1,4-β-xylanases from Antarctic krill, Euphausia superba Dana. Comp. Biochem. Physiol. 127, 325–335.

    Article  CAS  Google Scholar 

  69. Kudo, S. (1992) Enzymatic basis for protection of fish embryos by the fertilization envelope. Experientia. 48, 277–281.

    Article  PubMed  CAS  Google Scholar 

  70. Inborr, J., Puhakka, J., Bakker, J.G., and Van der Meulen, J. (1999) β-glucanase and xylanase activities in stomach and ileum of growing pigs fed with wheat bran diets with and without enzyme treatment. Arch. Tierernahr. 52, 263–274.

    PubMed  CAS  Google Scholar 

  71. Marounek, M., Vovk, S.J., and Skrivanova, V. (1995) Distribution of activity of hydrolytic enzymes in the digestive tract of rabbits. Br. J. Nutr. 73, 463–469.

    Article  PubMed  CAS  Google Scholar 

  72. Ponpium, P., Ratanakhanokchai, K., and Kyu, K.L. (2000) Isolation and properties of a cellulosome-type multienzyme complex of the thermophilic Bacteroides sp. strain P-1. Enzyme Microb. Technol. 26, 459–465.

    Article  CAS  PubMed  Google Scholar 

  73. Bayer, E.A., Morag, E., and Lamed, R. (1994) The cellulosome—a treasure-trove for biotechnology. TIBTECH. 12, 379–386.

    CAS  Google Scholar 

  74. Shoham, Y., Lamed, R., and Bayer, E.A. (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. TIBTECH. 7, 275–281.

    CAS  Google Scholar 

  75. Fierobe, H.-P., Mechaly, A., Tardif, C., et al. (2001). Design and production of active cellulosome chimeras: Selective incorporation of dockerin-containing enzymes into defined functional complexes. J. Biol. Chem. 276, 21257–21261.

    Article  PubMed  CAS  Google Scholar 

  76. Morag, E., Bayer, E.A., and Lamed, R. (1990) Relationship of cellulosomal and non-cellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes. J. Bacteriol. 172, 6098–6105.

    PubMed  CAS  Google Scholar 

  77. Ensor, L., Stosz, S., and Weiner, R. (1999) Expression of multiple insoluble complex polysaccharide degrading enzyme systems by a marine bacterium. J. Indus. Microbiol. Biotechnol. 23, 123–126.

    Article  CAS  Google Scholar 

  78. See additional information on URL: http://www.metu.edu.trhome.wwfbe/thesis/theabs/BTEC.html).

  79. Morrison, M. and Miron, J. (2000) MiniReview: Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil proteins?. FEMS Microbiol. Lett. 185, 109–115.

    PubMed  CAS  Google Scholar 

  80. Kim, Y.S., Singh, A.P., Wi, S.G., et al. (2001) Cellulosome-like structures in ruminal cellulolytic bacterium Ruminococcus albus F 40 as revealed by electron microscopy. Asian Aust. J. Anim. Sci. 14, 1429–1433.

    Google Scholar 

  81. Jindo, S., Karita, S., Fujino, E., et al. (2002) α-Galactosidase Aga27A, an enzymatic component of the Clostridium josui cellulosome. J. Bacteriol. 184, 600–604.

    Article  CAS  Google Scholar 

  82. Tamaru, Y., Karita, S., Ibrahim, A., Chen, H., and Doi. R.H. (2000) A large gene cluster of the Clostridium cellulovorans cellulosome. J. Bacteriol. 182, 5906–5910.

    Article  PubMed  CAS  Google Scholar 

  83. Górska, E., Tudek, B., and Russel, S. (2001) Degradation of cellulose by nitrogen fixing strain of Bacillus polymyxa. Acta Microbiol. Polon. 50, 129–137.

    Google Scholar 

  84. Mishra, C., Forrester, I.T., Kelley, B.D., Burgess, R.R., and Leatham, G.F. (1990) Characterization of a major xylanase purified from Lentinula edodes cultures grown on a commercial solid lignocellulosic substrate. Appl. Microbiol. Biotechnol. 33, 226–232.

    Article  CAS  Google Scholar 

  85. Bajpai, P. (1999) Application of enzymes in the pulp and paper industry Biotechnol. Prog. 15, 147–157.

    CAS  Google Scholar 

  86. Clarke, J.H., Davidson, K., Rixon, J.E., Halstead, J.R., Fransen, M.P., Gilbert, H.J., and Hazlewood, G.P. (2000) A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and α-galactosidase. Appl. Microbiol. Biotechnol. 53, 661–667.

    Article  PubMed  CAS  Google Scholar 

  87. Beg, O.K., Bhushan, B., Kapoor, M., and Hoondal, G.S. (2000) Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb. Technol. 27, 459–466.

    Article  CAS  PubMed  Google Scholar 

  88. Viikari, L., Ranua, M., Kantelinen, A., Sundquist, J., and Linko, M. (1986) Bleaching with enzymes. In: Proceedings of the 34d Conference on Biotechnology and Pulp and Paper Industries, Stockholm, 16–19 June, pp. 67–69.

  89. Kandeler, E. and Böhm, K.E. (1996) Temporal dynamics of microbial biomass, xylanase activity, N mineralization and potential nitrification in different tillage systems. Appl. Soil Ecol. 8, 181–191.

    Article  Google Scholar 

  90. Stemmer, S, Gerzabek, M., and Kandeler, E. (1999) Invertase and xylanase activity of bulk soil and particle size fractions during maize straw decomposition. Soil Biol. Biochem. 31, 9–8.

    Article  CAS  Google Scholar 

  91. Kandele, E., Stemmer, M., and Klimanek, E.M. (1999) Response of soil microbial biomass, urease and xylanase within particle size fractions to long term soil management. Soil Biol. Biochem. 31, 2161–2173.

    Google Scholar 

  92. Kandeler, E., Luxhaei, J., Tscherko, D., and Magid, J. (1999) Xylanase, invertase and protease activities at the soil litter interface of a sandy loam. Soil Biol. Biochem. 31, 1171–1179.

    Article  CAS  Google Scholar 

  93. Burton, S.G., Cowan, D.A., and Woodley, J.M. (2002) The search for the ideal biocatalyst. Nature. 20, 37–45.

    Article  CAS  Google Scholar 

  94. Kudo, T., Ohkoshi, A., and Horikoshi, K. (1985) Molecular cloning and expression of a xylanase gene of alkalophilic Aeromonas sp. No. 212 in Escherichia coli. J. Gen. Microbiol. 13, 2825–2830.

    Google Scholar 

  95. Whitehead, T.R. and Hespell, R.B. (1989) Cloning and expression in Escherichia coli of a xylanase gene from Bacteroides ruminicola 23. Appl. Environ. Microbiol. 55, 893–896.

    PubMed  CAS  Google Scholar 

  96. Hu, Y.J., Smith, D.C., Cheng, K.J., and Foresberg, C.W. (1991) Cloning of a xylanase gene from Fibrobacter succinogenes 135 and its expression in Escherichia coli. Can. J. Microbiol. 37, 554–561.

    PubMed  CAS  Google Scholar 

  97. Mondou, F., Shareck, F., Morosoli, R., and Kluepfel, D. (1986) Cloning of the xylanase gene of Streptomyces lividans. Gene. 49, 323–329.

    Article  PubMed  CAS  Google Scholar 

  98. Luthi, E., Bhana, J.N., and Bergquist, P.L. (1990) Xylanase from the extremely thermophilic bacterium Caldocellum saccharolyticum: overexpression of the gene in Escherichia coli and characterization of the gene product. Appl. Environ. Microbiol. 56, 2677–2683.

    PubMed  CAS  Google Scholar 

  99. Shendey, A. and Rao, M. (1993) Chromosomal gene integration and enhanced xylanase production in an alkalophilic thermophilic Bacillus sp. (NCIM 59). Biochem. Biophys. Res. Commun. 195, 776–784.

    Article  Google Scholar 

  100. Baba, T., Shinke, R., and Nanmori, T. (1994) Identification and characterization of clustered genes for a thermostable xylan degrading enzyme, β-xylosidase and xylanase of Bacillus stearothermophilus 21. Appl. Environ. Microbiol. 60, 2252–2258.

    PubMed  CAS  Google Scholar 

  101. Robert, C.A., Yang, C., McKenzie, R., Bilous, D., and Narang, S.A. (1989) Hyperexpression of a Bacillus circulans xylanase gene in Escherichia coli and characterization of the gene product. Appl. Environ. Microbiol. 55, 1192–1195.

    Google Scholar 

  102. Jeong, K.J., Lee, P.C., Park, I.Y., Kim, M.S., and Kim, S.C. (1998) Molecular cloning and characterization of an endoxylanase gene of Bacillus sp. in Escherichia coli. Enzyme Microb. Technol. 22, 599–605.

    Article  PubMed  CAS  Google Scholar 

  103. Suh, J. H., Eom, S. J., Cho, S-., G., and Choi, Y. J. (1996) Molecular cloning and expression of the β-xylosidase gene (xylB) of Bacillus stearothermophilus in Escherichia coli, J. Microbiol. Biotechnol. 6, 331–335.

    CAS  Google Scholar 

  104. Kubata, B.K., Suzuki, T., Ito, Y., et al. (1997) Cloning and expression of xylanase I gene (xyn A) of Aeromonas caviae ME-1 in Escherichia coli. J. Ferment. Bioeng. 83, 292–295.

    Article  CAS  Google Scholar 

  105. Sá-Pereira, P. (1994) Characterization of a β-1,4-endoglucanase codifying gene from Cellvibrio mixtus, expressed in Escherichia coli. (Abstract in English). MSc. Thesis. Technical University of Lisbon pp. 1–123.

  106. Vian, A., Carrascosa, A.V., Garcia, J., and Cortés, E. (1998) Structure of the β-galactosidase gene from Thermus sp. Strain T2, Expression in Escherichia coli and purification in a single step of an active fusion protein Appl. Environ. Microbiol. 64, 2187–219.

    PubMed  CAS  Google Scholar 

  107. Jung, K.H., Lee, K.M., Kim, H., et al. (1998) Cloning and expression of a Clostridium thermocellum xylanase gene in Escherichia coli. Biochem. Mol. Biol. Int. 44, 293–292.

    Google Scholar 

  108. Gupta, N., Reddy, V. S., Maiti, S., and Ghosh, A. (2000) Cloning, expression and sequence analysis of the gene encoding the alkali-stable thermostable endoxylanase from alkalophilic mesophilic Bacillus sp. Strain NG-27. Appl. Environ. Microbiol. 66, 2631–2635.

    Article  PubMed  CAS  Google Scholar 

  109. Dwivedi, P.P., Gibbs, M.D., Saul, D.J., and Bergquist, P.L. (1996) Cloning, sequencing and overexpression in Escherichia coli of a xylanase gene, xynA from the thermophilic bacterium Rt8B.4 genus Caldicellulosiruptor. Appl. Microbiol. Biotechnol. 45, 86–93.

    Article  PubMed  CAS  Google Scholar 

  110. Qureshy, A.F., Khan, L.A., and Khanna, S. (2000) Expression of Bacillus circulans Teri-42 xylanase gene in Bacillus subtilis. Enzyme Microb. Technol. 27, 227–233.

    Article  CAS  PubMed  Google Scholar 

  111. Schlacher, A., Holzmann, K., Hayn, M., Steiner, W., and Schwab, H. (1996) Cloning and characterization of the gene for the thermostable xylanase XynA for Thermomyces languinosus. J. Biotechnol. 49, 211–218.

    Article  PubMed  CAS  Google Scholar 

  112. Honda, H., Kudo, T., Ikura, Y., and Horikoshi, K. (1985) Two types of xylanases of alkalophilic Bacillus sp. No C-125. Can. J. Microbiol. 31, 538–542.

    CAS  Google Scholar 

  113. Ebanks, R., Dupont, M., Shareck, F., Morosoli, R., Kluepfel, D., and Dupont, C. (2000) Development of an Escherichia coli expression system and thermostability screening assay for libraries of mutant xylanase. J. Ind. Microbiol. Biotechnol. 25, 310–314.

    Article  CAS  PubMed  Google Scholar 

  114. Karlsson, E.N., Dahlberg, L., Torto, N., Gorton, L., and Holst, O. (1998) Enzymatic specificity and hydrolysis pattern of the catalytic domain of the xylanase Xyn1 from Rhodothermus marinus. J. Biotechnol. 60, 23–35.

    Article  PubMed  CAS  Google Scholar 

  115. Sunna, A. and Antranikian, G. (1996) Growth and production of xylanolytic enzymes by the extreme thermophilic anaerobic bacterium Thermotoga thermarum. Appl. Microbiol. Biotechnol. 45, 671–676.

    Article  CAS  Google Scholar 

  116. Blanco, J., Coque, J.J.R., Velasco, J., and Martin, J.F. (1997) Cloning, expression in Streptomyces lividans and biochemical characterization of a thermostable endo-β-1,4- xylanase of Thermomonospora alba UL JB1 with cellulose binding ability. Appl. Microbiol. Biotechnol. 48, 208–217.

    Article  PubMed  CAS  Google Scholar 

  117. La Grange, D.C., Clayssens, M., Pretorius, I.S., and Van Zyl, W.H. (2000) Co-expression of the Bacillus pumilus β-xylosidase (xynB) gene with the Trichoderma reesei β-xylanase 2 (xyn2) gene in yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 54, 195–200.

    Article  PubMed  Google Scholar 

  118. Li, X.-L. and Ljungdhal, L.G. (1996) Expression of Aureobasidium pullulans xynA in, and secretion of the xylanase from Saccharomyces cerevisiae. Appl. Environ. Microbiol. 62, 209–213.

    PubMed  CAS  Google Scholar 

  119. Nuyens, F., Van Zyl, W.H., Iserentant, D., Verachtert, H., and Michiels, C. (2001) Heterologous expression of the Bacillus pumilus endo-β-xylanase (xynA) gene in the yeast Saccharomyces cerevisiae Appl. Microbiol. Biotechnol. 56, 431–434.

    Article  PubMed  CAS  Google Scholar 

  120. Donald, K.A.G., Carle, A., Gibbs, M.D., and Bergquist, P.L. (1994) Production of a bacterial thermophilic xylanase in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 42, 309–312.

    CAS  Google Scholar 

  121. Jung, K.H. and Pack, M.Y. (1993) Expression of a Clostridium thermocellum xylanase gene in Bacillus subtilis. Biotechnol. Lett. 15, 115–120.

    Article  CAS  Google Scholar 

  122. Tremblay, L. and Archibald, F. (1993) Production of a cloned xylanase in Bacillus cereus and its performance in kraft pulp prebleaching. Can. J. Microbiol. 39, 853–860.

    PubMed  CAS  Google Scholar 

  123. Scheirlinck, T., De Meutter, J., Arnaut, G., Joos, H., Claeyssens, M., and Michiels F. (1990) Cloning and expression of cellulase and xylanase genes in Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 33, 534–541.

    Article  CAS  Google Scholar 

  124. Ruiz-Arribas, A., Fernandez-Abalos, J.M., Sanchez, P., Garda, A.L., and Santamaria, R. (1995) Overproduction, purification and biochemical characterization of a xylanase (Xyn1) from Streptomyces halstedii JM88. Appl. Environ. Microbiol. 61, 2414–2419.

    PubMed  CAS  Google Scholar 

  125. Kimura, T., Kitamoto, N., Kito, Y., Karita, S., Sakka, K., and Ohmiya, K. (1998) Molecular cloning of xylanase gene xynG1 from Aspergillus oryzae KBN 616, a Shoyu Koji Mold, and analysis of its expression. J. Ferment. Bioeng. 85, 10–16.

    Article  CAS  Google Scholar 

  126. Clark, E.M., Ilmén, M., and Pentillä, M. (1997) Expression patterns of ten hemicellulase genes of the filamentous fungus Trichoderma reeseion various carbon sources. J. Biotechnol. 57, 167–179.

    Article  Google Scholar 

  127. Saarelainen, R., Paloheimo, M., Fagerström, R., Suominen, P.L., and Nevalainen, K.M.H. (1993) Cloning, sequencing and enhanced expression of the Trichoderma reesei endoxylanase II (pI 9) gene xln2. Mol. Gen. Genet. 241, 497–503.

    Article  PubMed  CAS  Google Scholar 

  128. Fernandes, A.C., Fontes, C.M.G.A., Gilbert, H.J., Hazlewood, G.P., Fernandes, T.H., and Ferreira, L.M.A. (1999) Homologous xylanases from Clostridium thermocellum, evidence for bi-functional activity, synergism between catalytic modules and the presence of xylan-binding domains in enzyme complexes. Biochem. J. 342, 105–110.

    Article  PubMed  CAS  Google Scholar 

  129. Fontes, C.M.G.A., Ali, S., Gilbert, H.J., Hazlewood, G.P., Hirst, B.H., and Hall, H. (1999) Bacterial xylanase expression in mammalian cells and transgenic mice. J. Biotechnol. 72, 95–101.

    Article  PubMed  CAS  Google Scholar 

  130. Herbers, K., Wilke, I., and Sonnewald, U. (1995) A thermostable xylanase from Clostridium thermocellum expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. BioTech. 13, 63–66.

    Article  CAS  Google Scholar 

  131. Sun, J., Kawazu, T., Karita, S., Kimura, T., Sakka, K., and Ohmiya, K. (1997) High expression of the xylanase B gene from Clostridium stercorarium in tobacco cells. J. Ferment. Bioeng. 84, 219–223.

    Article  CAS  Google Scholar 

  132. Borisjuk, N.V., Borisjuk, L.G., Logendra, S., Petersen, F., Gleba, Y., and Raskin, I. (1999) Production of recombinant proteins in plant root exudates. Nature Biotech. 17, 466–469.

    Article  CAS  Google Scholar 

  133. See additional information in the URL: http://www.icgeb.trieste.it/RESEARCH/ND/Plant Transformation.htm

  134. Doi, N. and Yanagawa, H. (1999) Minireview. Insertional gene technology. FEBS Lett. 457, 1–4.

    Article  PubMed  CAS  Google Scholar 

  135. Aÿ, J., Götz, F. and Borriss, R. (1998) Structure and function of the Bacillus hybrid enzyme GluXyn 1: Native like jellyroll fold preserved after insertion of autonomous globular domain. Proc. Natl. Acad. Sci. USA. 95, 6613–6618.

    Article  PubMed  Google Scholar 

  136. Kaneko, S., Iwamatsu, S., Kuno, A., Fujimoto, Z., Sato, Y., Yura, K., Go, M., Mizuno, H., Taira, K., Hasegawa, T., Kusakabe, I., and Hayashi, K. (2000) Module shuffling of a family F/10 xylanase: replacement of modules M4 and M5 of the FXYN of Streptomyces olivaceoviridis E-86 with those of the Cex of Cellulomonas fimi. Protein Eng. 13, 873–879.

    Article  PubMed  CAS  Google Scholar 

  137. Shibuya, H., Kaneko, S., and Hayashi, K. (2000) Enhancement of the thermostability and hydrolytic activity of xylanase by random gene shuffling. Biochem. J. 349, 651–656.

    Article  PubMed  CAS  Google Scholar 

  138. Ahsan, M.M., Kaneko, S., Wang, Q., et al. (2001) Capacity of Thermomonospora alba XylA to impart thermostability in family F/10 chimeric xylanases. Enzyme Microb. Technol. 28, 8–15.

    Article  CAS  PubMed  Google Scholar 

  139. Georis, J., Esteves, F.L., Brasseur, J.L., et al. (2000) An additional aromatic interaction improves the thermostability and the thermophilicity of a mesophilic family 11 xylanase: Structural basis and molecular study. Protein Sci. 9, 466–475.

    PubMed  CAS  Google Scholar 

  140. Tomme, P., Gilkes, N.R., Miller, R.C. Jr., Warren, A.J., and Kilburn, D.G. (1994) An internal cellulose-binding domain mediates adsorption of an engineered bifunctional xylanase/cellulase. Protein Eng. 7, 117–123.

    Article  PubMed  CAS  Google Scholar 

  141. Chen, C.C. and Westpheling, J. (1998) Partial characterization of the Streptomyces lividans xylB promoter and its use for expression of a thermostable xylanase from Thermotoga maritima. Appl. Environ. Microbiol. 64, 4217–4225.

    PubMed  CAS  Google Scholar 

  142. Lappalainen, A. (1986) Purification and characterization of xylanolytic enzymes from Trichoderma reesei. Biotech. Appl. Biochem. 8, 437–448.

    CAS  Google Scholar 

  143. Sardar, M., Roy, I. and Gupta, M.N. (2000) Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversible soluble polymer Eudragit TM L-100. Enzyme Microb. Technol. 27, 672–679.

    Article  CAS  PubMed  Google Scholar 

  144. Sá-Pereira, P., Duarte, J., and Costa-Ferreira, M. (2000) Electroelution as a simple and fast protein purification method, isolation of an extracellular xylanase from Bacillus sp. CCMI 966. Enzyme Microb. Technol. 27, 95–99.

    Article  PubMed  Google Scholar 

  145. Bim, M.A. and Franco, T.T. (2000) Extraction in aqueous two phase systems of alkaline xylanase produced by Bacillus pumilus and its application in kraft pulp bleaching. J. Chromatogr. B. Biomed. Sci. Appl. 743, 349–356.

    Article  PubMed  CAS  Google Scholar 

  146. Costa, S.A., Pessoa A., Jr, and Roberto, I.C. (1998) Xylanase recovery. Effect of conditions on the aqueous two phase system using experimental design. Appl. Biochem. Biotechnol. 70/72, 629–639.

    Google Scholar 

  147. Kulkarni, N., Vaidya, A., and Rao, M. (1999) Extractive cultivation of recombinant Escherichia coli using aqueous two phase systems for production and separation of extracellular xylanase. Biochem. Biophys. Res. Commun. 255, 274–278.

    Article  PubMed  CAS  Google Scholar 

  148. Ritschkoff, A.-C., Buchert, J., and Viikari, L. (1994) Purification and characterization of a thermophylic xylanase from the brown-rot fungus Gloeophyllum trabeum. J. Biotechnol. 32, 67–74.

    Article  CAS  Google Scholar 

  149. Gessesse, A. and Mamo, G. (1998) Purification and characterization of an alkaline xylanase from alkaliphilic Micrococcus sp. AR-135. J. Indust. Microbiol. Biotechnol. 20, 210–214.

    Article  CAS  Google Scholar 

  150. Winterhalter, C. and Liebl, W. (1995) Two extremely thermostable xylanases of the hyperthermophilic Thermotoga maritima MSB8. Appl. Environ. Microbiol. 61, 1810–1815.

    PubMed  CAS  Google Scholar 

  151. Saha, B.C. (2001) Xylanase from a newly isolated Fusarium verticillioides capable of utilizing corn fiber xylan. Appl. Microbiol. Biotechnol. 56, 762–766.

    Article  PubMed  CAS  Google Scholar 

  152. Breccia, J.D., Siñeriz, F., Baigorí, M.D., Castro, G.R., and Hatti-Kaul, R. (1998) Purification and characterization of a thermostable xylanase from Bacillus amyloliquefaciens. Enzyme Microb. Technol. 22, 42–49.

    Article  CAS  Google Scholar 

  153. Georis, J., Giannotta, F., Buyl, E., Granier, B., and Frère, J.M. (2000) Purification and characterization of three endo-β-1,4-xylanases produced by Streptomyces sp. strain S38 which differ in their ability to enhance the bleaching of kraft pulps. Enzyme Microb. Technol. 26, 178–186.

    Article  CAS  PubMed  Google Scholar 

  154. Bailey, M.J. (1988) A note on the use of dinitrosalicylic acid for determining the products of enzymatic reactions. Appl. Microbiol. Biotechnol. 29, 494–496.

    Article  CAS  Google Scholar 

  155. Silveira, F.Q.P., Sousa, M.V., Ricart, C.A.O., Milagres, A.M.F., Medeiros, C.L., and Filho, E.X.F. (1999) A new xylanase from Trichoderma harzianum strain. J. Indus. Microbiol. Biotechnol. 23, 682–685.

    Article  CAS  Google Scholar 

  156. Christakopoulos, P., Nerinckx, W., Kekos, D., Macris B., and Claeyssens M. (1996) Purification of two low molecular mass alkaline xylanases from Fusarium oxysporum F3. J. Biotechnol. 51, 181–189.

    Article  PubMed  CAS  Google Scholar 

  157. Bataillon, M., Cardinali, A.-P.N., Castillon, N., and Duchiron, F. (2000) Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. Enzyme Microb. Technol. 26, 187–192.

    Article  CAS  PubMed  Google Scholar 

  158. Khasin, A., Alchanati, I., and Shoham, Y. (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59, 1725–1730.

    PubMed  CAS  Google Scholar 

  159. Bronnenmeier, K., Kern, A., Liebl, W., and Staudenbauer, W.L. (1995) Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl. Environ. Microbiol. 61, 1399–1407.

    PubMed  CAS  Google Scholar 

  160. Okazaki, W., Akiba, T., Horikoshi, K., and Akahoshi, R. (1985) Purification and characterization xylanases from alkalophilic thermophilic Bacillus spp.. Agric. Biol. Chem. 49, 2033–2039.

    CAS  Google Scholar 

  161. Belancic, A., Scarpa, J., Peirano, A., Díaz, R., Steiner, J., and Eyzaguirre, J. (1995) Penicillium purpurogenum produces several xylanases. Purification and properties of two of the enzymes. J. Biotechnol. 4, 71–79.

    Article  Google Scholar 

  162. Lin, J., Ndlovu, L.M., Singh, S., and Pillay, B. (1999) Purification and biochemical characteristics of β-d-xylanase from a thermophilic fungus, Thermomyces lanuginosus-SSBP. Biotechnol. Appl. Biochem. 30, 73–79.

    PubMed  CAS  Google Scholar 

  163. Bernier, R., Jr. Desrochers, M., Jurasek, L., and Paice, M.G. (1983) Isolation and characterization of a xylanase from Bacillus subtilis. Appl. Environ. Microbiol. 46, 511–514.

    PubMed  CAS  Google Scholar 

  164. Raj, K.C. and Chandra, T.S. (1996) Purification and characterization of xylanase from alkali tolerant Aspergillus fisheri Fxn1. FEMS Microbiol. Lett. 145, 457–461.

    Article  PubMed  CAS  Google Scholar 

  165. Pham, D.Q.-D., Hice, R.H., Sivasubramanian, N., and Federici, B.A. (1993) The 1629-bp open reading frame of the Autographa californica multinucleocapsid nuclear polyhedrosis virus codes for a virion structural protein. Gene. 137, 275–280.

    Article  PubMed  CAS  Google Scholar 

  166. Ziemer, M.A., Mason, A., and Carlson, D.M. (1982) Cell-free translations of proline-rich protein mRNAs. J. Biol. Chem. 18, 11176–11180.

    Google Scholar 

  167. Karlsson, E.N., Bartonek-Roxa, E., and Holst, O. (1998) Evidence for substrate binding of a recombinant thermostable xylanase originating from Rhodothermus marinus. FEMS Microbiol. Lett. 168, 1–7.

    Article  PubMed  CAS  Google Scholar 

  168. Tuohy, M.G., Puls, J., Claeyssens, M., Vrsanska, M., and Coughlan M.P. (1993) The xylan degrading enzyme system of Talaromyces emersonii: Novel enzymes with activity against aryl-β-D-xylosides and unsubstituted xylan Biochem. J. 290, 515–523.

    PubMed  CAS  Google Scholar 

  169. Yinbo, O., Peiji, G., Dong, W., Xin, Z., and Xiao, Z. (1996) Production characterization and application of the cellulase-free xylanase from Aspergillus niger. Appl. Biochem. Biotechnol. 57/58, 375–381.

    Article  CAS  Google Scholar 

  170. Taipa, M.A., Aires-Barros, M.R., and Cabral, J.M.S. (1992) Minireview. Purification of lipases. J. Biotechnol. 26, 111–142.

    Article  PubMed  CAS  Google Scholar 

  171. Cunha, M.T. Cabral, J.M.S. Aires-Barros, M.R., and Tjerneld, F. (2000) Effect of salts and surfactants on the partitioning of Fusarium solani pisi cutinase in aqueous two phase systems of thermoseparating ethylene oxide/propylene oxide random copolymer and hydroxypropyl starch. Biosep. 9, 203–209.

    Article  CAS  Google Scholar 

  172. Costa, M.J.L., Cunha, M.T., Cabral, J.M.S., and Aires-Barros, M.R. (2000) Scale up of a recombinant cutinase whole broth extraction with PEG phosphate aqueous two-phase systems. Biosep. 9, 231–238.

    Article  CAS  Google Scholar 

  173. Cunha, M.T. and Aires-Barros, M.R. (2002) Large scale extraction of proteins Mol. Biotechnol. 20, 29–40.

    Article  PubMed  CAS  Google Scholar 

  174. Sturesson, S., Tjerneld, F., and Johansson, G. (1990) Partition of macromolecules and cell particles in aqueous two-phase system based on hydroxypropyl starch and poly(ethylene glycol). Appl. Biochem. Biotechnol. 26, 281–295.

    PubMed  CAS  Google Scholar 

  175. Rodrigues, E. M. G., Pessoa A., Jr., and Milagres, A. M. F. (1999) Screening of variables in xylanase recovery using BDBAC reversed micelles. Appl. Biochem. Biotechnol. 77/99, 779–788.

    Article  Google Scholar 

  176. Rodrigues, E.M.G., Milagres, A.M.F., and Pessoa, A. Jr., (1999) Selective recovery of xylanase from Penicillium janthinellum using BDBAC reversed micelles. Acta Biotechnol. 19, 157–161c

    Article  CAS  Google Scholar 

  177. See additional information on URL: http://www.ipst.edu/faculty/ragauskas_bio_map.htm

  178. Shpigel, E., Goldlust, A., Eshel, A., et al. (2000) Expression, purification and applications of staphylococcal Protein A fused to cellulose binding domain. Biotechnol. Appl. Biochem. 31, 197–203.

    Article  PubMed  CAS  Google Scholar 

  179. Millward-Saddler S.J., Poole, D.M., Henrissat, B. et al. (1994) Evidence for a general role for high affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol. Microbiol. 11, 375–382.

    Article  Google Scholar 

  180. Linder, M. and Teeri, T.T. (1997) The roles and function of cellulose-binding domains. J. Biotechnol. 57, 15–28.

    Article  CAS  Google Scholar 

  181. Doheny, J.G., Jervis, E.J., Guarna, M.M., Humphries, R.K., Warren, R.A.J., and Kilburn, D.G. (1999) Cellulose as an inert matrix for presenting cytokines to target cells, production and properties of a stem cell factor- cellulose-binding domain fusion protein. Biochem. J. 339, 429–434.

    Article  PubMed  CAS  Google Scholar 

  182. Linder, M., Nevanen, T., Söderholm, L., Bengs, O., and Teeri, T.T. (1998) Improved immobilization of fusion proteins via cellulose-binding domains. Biotechnol. Bioeng. 60, 642–647.

    Article  PubMed  CAS  Google Scholar 

  183. See additional information on the URL: http://www.agtechfund.com/potfolio/cbd.htm

  184. Zilliox, C. and Debeire, P. (1998) Hydrolysis of wheat straw by a thermostable endoxylanase. Adsorption and kinetic studies. Enzyme Microb. Technol. 22, 58–63.

    Article  CAS  Google Scholar 

  185. Gessesse, A. (1998) Purification of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp. Appl. Environ. Microbiol. 64, 3533–3535.

    CAS  PubMed  Google Scholar 

  186. Dey, D., Hinge, J., Shendye, A., and Rao, M. (1992) Purification and properties of extracellular endoxylanases from alkalophilic thermophilic Bacillus sp.. Can. J. Microbiol. 38, 436–442.

    CAS  Google Scholar 

  187. Nakamura, S., Wakabayashi, K., Nakai, R., Aono, R., and Horikoshi, K. (1993) Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl. Environ. Microbiol. 59, 2311–2316.

    PubMed  CAS  Google Scholar 

  188. Blanco, A., Vidal, T., Colom, J.F., and Pastor, F.I.J. (1995) Purification and properties of xylanase A from an alkali-tolerant Bacillus sp. strain BP-23. Appl. Environ. Microbiol. 61, 4468–4470.

    PubMed  CAS  Google Scholar 

  189. Dhillon, A., Gupta, J. K., and Khanna, S. (2000) Enhanced production, purification and characterization of a novel cellulase-poor thermostable, alkalitolerant xylanase from Bacillus circulans AB 16. Process Biochem. 35, 849–856.

    Article  CAS  Google Scholar 

  190. Esteban, R., Villanueva, J.R., and Villa, T.G. (1982) β-d-xylanases of Bacillus circulans WL-12. Can. J. Microbiol. 28, 733–739.

    CAS  Google Scholar 

  191. Morales, P., Madarro, A., Pérez-González, J.A., et al. (1993) Purification and characterization of alkaline xylanases from Bacillus polymyxa. Appl. Environ. Microbiol. 59, 1376–1382.

    PubMed  CAS  Google Scholar 

  192. Breccia, J.D., Torto, N., Gorton, L., Siñeriz, F., and Hatti-Kaul, R. (1998) Specificity and mode of action of a thermostable xylanase from Bacillus amyloliquefaciens on-line monitoring of hydrolysis products. Appl. Biochem. Biotechnol. 69, 31–40.

    CAS  Google Scholar 

  193. Christakopoulos, P., Nerinckx, W., Kekos, D., Macris, B., and Claeyssens, M. (1997) The alkaline xylanase III from Fusarium oxysporum F3 belongs to family F/10. Carbohydr. Res. 302, 191–195.

    Article  PubMed  CAS  Google Scholar 

  194. Kaneko, S., Kuno, A., Muramatsu, M., et al. (2000) Purification and characterization of a family G/11 β-xylanase from Streptomyces olivaceoviridis E-86. Biosci. Biotechnol. Biochem. 64, 447–451.

    Article  PubMed  CAS  Google Scholar 

  195. Biswas, S.R., Jana, S.C., Mishra, A.K., and Nanda, G. (1989) Production, purification and characterization of xylanase from a hyperxylanolytic mutant of Aspergillus ochraceus. Biotechnol. Bioeng. 35, 244–251.

    Article  Google Scholar 

  196. Dobberstein, J. and Emeis, C.C. (1989) β-xylanase produced by Aureobasidium pullulans CBS 58475. Appl. Microbiol. Biotechnol. 32, 262–268.

    Article  CAS  Google Scholar 

  197. Dahlberg, L., Holst, O., and Kristjansson, J.K. (1993) Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl. Microbiol. Biotechnol. 40, 63–68.

    Article  CAS  Google Scholar 

  198. Liu, W., Zhu, W., Lu, Y., Kong, J., and Guirong, M.A. (1998) Production, partial purification and characterization of xylanase from Trichosporon cutaneum SL409. Process Biochem. 33, 331–336.

    Article  CAS  Google Scholar 

  199. Segura, B.G. and Fevre, M. (1993) Purification and characterization of two 1,4-β-xylan endohydrolases from the rumen fungus Neocalimastix frontalis. Appl. Environ. Microbiol. 59, 3654–3660.

    Google Scholar 

  200. Sales, B.C., Cunha, R.B., Fontes, W., Sousa, M.V., and Filho, E.X.F. (2000) Purification and characterization of a new xylanase from Acrophialophora nainiana. J. Biotechnol. 81, 199–204.

    Article  Google Scholar 

  201. Gilbert, M., Breuil, C., Yaguchi, M., and Saddler, J.N. (1992) Purification and characterization of a xylanase from thermophilic ascomycete Thielavia terrestris 255B. Appl. Biochem. Biotechnol. 34/35, 247–259.

    Article  Google Scholar 

  202. Silva, R., Yim, D.G.K., and Park, Y.K. (1994) Application of thermostable xylanases from Humicola sp. for pulp improvement. J. Ferment. Bioeng. 77, 109–111.

    Article  Google Scholar 

  203. Cortez, E.V., and Pessoa A. Jr, (1999) Xylanase and β-xylosidase separation by fractional precipitation. Process Biochem. 35, 277–283.

    Article  CAS  Google Scholar 

  204. Rogalski, J., Oleszek, M., and Z.adora, T.J. (2001) Purification and characterization of two endo-1,4-β-xylanases and β-xylosidase from Plebia radiata. Acta Microbiol. Polon. 50, 117–128.

    CAS  Google Scholar 

  205. Caspers, M.P.M., Lok, F., Sinjorgo, K.M.C., et al. (2001) Synthesis, processing and export of cytoplasmic endo-β-1,4-xylanase from barley aleurone during germination. Plant J. 26, 191–204.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Sá-Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sá-Pereira, P., Paveia, H., Costa-Ferreira, M. et al. A new look at xylanases. Mol Biotechnol 24, 257–281 (2003). https://doi.org/10.1385/MB:24:3:257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:24:3:257

Index Entries

Navigation