Journal of Molecular Neuroscience

, Volume 28, Issue 2, pp 111–123 | Cite as

β-amyloid and endoplasmic reticulum stress reponses in primary neurons

Effects of drugs that interact with the cytoskeleton
  • Kathleen I. Seyb
  • Sabah Ansar
  • Jennifer Bean
  • Mary L. Michaelis
Original Article

Abstract

In vitro studies designed to probe the cellular mechanisms underlying β-amyloid (Aβ) toxicity in neurons have implicated several processes, including hyperphosphorylation of the microtubule (MT)-associated protein tau, loss of MT stability, and increased cytosolic calcium levels. Given that Alzheimer's disease involves accumulation of aggregates of two different proteins, the potential involvement of the unfolded protein response (UPR) and endoplasmic reticulum (ER) dysfunction has been suggested to lead to cell death. The relationship between these apparently divergent factors and pathways in Aβ toxicity is still unclear. In these studies we investigated the relationship between MT stability and the ER stress response in primary neurons exposed to toxic Aβ peptides in culture. In addition, nocodazole (ND) was used to determine if direct disruption of MT organization activated the UPR. Pretreatment of neurons with MT-stabilizing drugs paclitaxel (Taxol) and epothilone A prevented the induction of three indicators of the UPR induced by Aβ, ND, and thapsigargin, a compound known to inhibit the sarco-ER Ca2+-ATPase and deplete ER calcium stores, resulting in initiation of the UPR. In addition, treatment with MT-stabilizing drugs blocked cell death and the cytoskeletal disorganization induced by these insults. The results suggest that loss of cytoskeletal integrity is a very early step in the response to a variety of toxic stimuli and that preservation of MT stability might be important in preventing the induction of ER dysfunction and subsequent cell death by Aβ in neurons.

Index Entries

Alzheimer's disease β-amyloid endoplasmic reticulum (ER) stress MT stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthony S. G., Schipper H. M., Tavares R., Hovanesian V., Cortez S. C., Stopa E. G., and Johanson C. E. (2003) Stress protein expression in the Alzheimer-diseased choroid plexus. J. Alzheimers Dis. 5, 171–177.PubMedGoogle Scholar
  2. Blalock E. M., Geddes J. W., Chen K. C., Porter N. M., Markesbery W. R., and Landfield P. W. (2004) Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc. Natl. Acad. Sci. U.S.A. 101, 2173–2178.PubMedCrossRefGoogle Scholar
  3. Bollag D. M., McQueney P. A., Zhu J., Hensens O., Koupal L., Liesch J., et al. (1995) Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55, 2325–2333.PubMedGoogle Scholar
  4. Burke W.J., Raghu G., and Strong R. (1994) Taxol protects against calcium-mediated death of differentiated rat pheochromocytoma cells. Life Sci. 55, 313–319.PubMedCrossRefGoogle Scholar
  5. Busciglio J., Lorenzo A., Yeh J., and Yankner B. A. (1995) Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14, 879–888.PubMedCrossRefGoogle Scholar
  6. Chapman R., Sidrauski C., and Walter P. (1998) Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu. Rev. Cell Dev. Biol. 14, 459–485.PubMedCrossRefGoogle Scholar
  7. Darios F., Muriel M. P., Khondiker M. E., Brice A., and Ruberg M. (2005) Neurotoxic calcium transfer from endoplasmic reticulum to mitochondria is regulated by cyclin-dependent kinase 5-dependent phosphorylation of tau. J. Neurosci. 25, 4159–4168.PubMedCrossRefGoogle Scholar
  8. Divinski I., Mittelman L., and Gozes I. (2004) A femtomolar acting octapeptide interacts with tubulin and protects astrocytes against zinc intoxication. J. Biol. Chem. 279, 28,531–28,538.CrossRefGoogle Scholar
  9. Ghribi O., Herman M. M., DeWitt D. A., Forbes M. S., and Savory J. (2001) Abeta(1–42) and aluminum induce stress in the endoplasmic reticulum in rabbit hippocampus, involving nuclear translocation of gad d 153 and NF-kappaB. Brain Res. Mol. Brain Res. 96, 30–38.PubMedCrossRefGoogle Scholar
  10. Goedert M. (1998) Neurofibrillary pathology of Alzheimer's disease and other tauopathies. Prog. Brain Res. 117, 287–306.PubMedCrossRefGoogle Scholar
  11. Gozes I. and Divinski I. (2004) The femtomolar-acting NAP interacts with microtubules: novel aspects of astrocyte protection. J. Alzheimers Dis. 6, S37–41.Google Scholar
  12. Grace E. A., Rabiner C. A., and Busciglio J. (2002) Characterization of neuronal dystrophy induced by fibrillar amyloid beta: implications for Alzheimer's disease. Neuroscience 114, 265–273.PubMedCrossRefGoogle Scholar
  13. Guo Q., Furukawa K., Sopher B. L., Pham D. G., Xie J., Robinson N., et al. (1996) Alzheimer's PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. Neuroreport 8, 379–383.PubMedCrossRefGoogle Scholar
  14. Guo Q., Sopher B. L., Furukawa K., Pham D. G., Robinson N., Martin G. M., and Mattson M. P. (1997) Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J. Neurosci. 17, 4212–4222.PubMedGoogle Scholar
  15. Harding H. P., Zhang Y., and Ron D. (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274.PubMedCrossRefGoogle Scholar
  16. Herms J., Schneider I., Dewachter I., Caluwaerts N., Kretzschmar H., and Van Leuven F. (2003) Capacitive calcium entry is directly attenuated by mutant presenilin-1, independent of the expression of the amyloid precursor protein. J. Biol. Chem. 278, 2484–2489.PubMedCrossRefGoogle Scholar
  17. Katayama T., Imaizumi K., Honda A., Yoneda T., Kudo T., Takeda M., et al. (2001) Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked presenilin-1 mutations. J. Biol. Chem. 276, 43,446–43,454.Google Scholar
  18. Katayama T., Imaizumi K., Manabe T., Hitomi J., Kudo T., and Tohyama M. (2004) Induction of neuronal death by ER stress in Alzheimer's disease. J. Chem. Neuroanat. 28, 67–78.PubMedCrossRefGoogle Scholar
  19. Kaufman R. J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233.PubMedGoogle Scholar
  20. Lee K., Tirasophon W., Shen X., Michalak M., Prywes R., Okada T., et al. (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16, 452–466.PubMedCrossRefGoogle Scholar
  21. Lee V. M., Daughenbaugh R., and Trojanowski J. Q. (1994) Microtubule stabilizing drugs for the treatment of Alzheimer's disease. Neurobiol. Aging 15(Suppl. 2), S87–89.CrossRefGoogle Scholar
  22. Leissring M. A., Akbari Y., Fanger C. M., Cahalan M. D., Mattson M. P., and LaFerla F. M. (2000) Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J. Cell Biol. 149, 793–798.PubMedCrossRefGoogle Scholar
  23. Leissring M. A., Paul B. A., Parker I., Cotman C. W., and LaFerla F. M. (1999) Alzheimer's presenilin-1 mutation potentiates inositol 1,4,5-trisphosphate-mediated calcium signaling in Xenopusoocytes. J. Neurochem. 72, 1061–1068.PubMedCrossRefGoogle Scholar
  24. Li G., Faibushevich A., Turunen B. J., Yoon S. O., Georg G., Michaelis M. L., and Dobrowsky R. T. (2003) Stabilization of the cyclin-dependent kinase 5 activator, p35, by paclitaxel decreases beta-amyloid toxicity in cortical neurons. J. Neurochem. 84, 347–362.PubMedCrossRefGoogle Scholar
  25. Mattson M. P. (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77, 1081–1132.PubMedGoogle Scholar
  26. Mattson M. P. and Chan S. L. (2001) Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits. J. Mol. Neurosci. 17, 205–224.PubMedCrossRefGoogle Scholar
  27. Mattson M. P., Chan S. L., and Camandola S. (2001) Presenilin mutations and calcium signaling defects in the nervous and immune systems. Bioessays 23, 733–744.PubMedCrossRefGoogle Scholar
  28. Mattson M. P., Mark R. J., Furukawa K., and Bruce A. J. (1997) Disruption of brain cell ion homeostasis in Alzheimer's disease by oxy radicals, and signaling pathways that protect therefrom. Chem. Res. Toxicol. 10, 507–517.PubMedCrossRefGoogle Scholar
  29. Michaelis M. L., Ansar S., Chen Y., Reiff E. R., Seyb K. I., Himes R. H., et al. (2005) β-amyloid-induced neurodegeneration and protection by structurally diverse microtubule-stabilizing agents. J. Pharmacol. Exp. Ther. 312, 659–668.PubMedCrossRefGoogle Scholar
  30. Michaelis M. L., Dobrowsky R. T., and Li G. (2002) Tau neurofibrillary pathology and microtubule stability. J. Mol. Neurosci. 19, 289–293.PubMedCrossRefGoogle Scholar
  31. Michaelis M. L., Ranciat N., Chen Y., Bechtel M., Ragan R., Hepperle M., et al. (1998) Protection against beta-amyloid toxicity in primary neurons by paclitaxel (Taxol). J. Neurochem. 70, 1623–1627.PubMedCrossRefGoogle Scholar
  32. Morishima N., Nakanishi K., Takenouchi H., Shibata T., and Yasuhiko Y. (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem. 277, 34,287–34,294.CrossRefGoogle Scholar
  33. Noble P. and Mayer-Proschel M. (1998) Culture of astocytes, oligodendrocytes and O-2A progenitor cells, in Culturing Nerve Cells, 2nd Edition (Banker G. and Goslin K., eds) MITT Press, Cambridge, MA, pp 499–543.Google Scholar
  34. Pal R., Agbas A., Bao X., Hui D., Leary C., Hunt J., et al. (2003). Selective dendrite-targeting of mRNAs of NR1 splice variants without exon 5: identification of a cisacting sequence and isolation of sequence-binding proteins. Brain Res. 994, 1–18.PubMedCrossRefGoogle Scholar
  35. Pestova T. V., Kolupaeva V. G., Lomakin I. B., Pilipenko E. V., Shatsky I. N., Agol V. I., and hellen C. U. (2001) Molecular mechanisms of translation initiation in eukaryotes. Proc. Natl. Acad. Sci. U.S.A. 98, 7029–7036.PubMedCrossRefGoogle Scholar
  36. Rao R. V., Castro-Obregon S., Frankowski H., Schuler M., Stoka V., del Rio G., et al. (2002) Coupling endoplasmicreticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J. Biol. Chem. 277, 21,836–21,842.Google Scholar
  37. Ron D. (2002) Translational control in the endoplasmic reticulum stress response. J. Clin. Invest. 110, 1383–1388.PubMedCrossRefGoogle Scholar
  38. Selkoe D. J. (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766.PubMedGoogle Scholar
  39. Sherman M. Y. and Goldberg A. L. (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29, 15–32.PubMedCrossRefGoogle Scholar
  40. Siman R., Flood D. G., Thinakaran G., and Neumar R. W. (2001) Endoplasmic reticulum stress-induced cysteine protease activation in cortical neurons: effect of an Alzheimer's disease-linked presenilin-1 knock-in mutation. J. Biol. Chem. 276, 44,736–44,743.CrossRefGoogle Scholar
  41. Song L., De Sarno P., and Jope R. S. (2002) Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J. Biol. Chem. 277, 44,701–44,708.Google Scholar
  42. Sood R., Porter A. C., Ma K., Quilliam L. A., and Wek R. C. (2000) Pancreatic eukaryotic initiation factor-2alpha kinase (PEK) homologues in humans, Drosophila melanogaster and Caenorhabditis elegans that mediate translational control in response to endoplasmic reticulum stress. Biochem. J. 346(Pt. 2), 281–293.PubMedCrossRefGoogle Scholar
  43. Spillantini M. G. and Goedert M. (1998) Tau protein pathology in neurodegenerative diseases. Trends Neurosci. 21, 428–433.PubMedCrossRefGoogle Scholar
  44. Sponne I., Fifre A., Drouet B., Klein C., Koziel V., Pincon-Raymond M., et al. (2003) Apoptotic neuronal cell death induced by the non-fibrillar amyloid-beta peptide proceeds through an early reactive oxygen species-dependent cytoskeleton perturbation. J. Biol. Chem. 278, 3437–3445.PubMedCrossRefGoogle Scholar
  45. Suen K. C., Yu M. S., So K. F., Chang R. C., and Hugon J. (2003) Upstream signaling pathways leading to the activation of double-stranded RNA-dependent serine/threonine protein kinase in beta-amyloid peptide neurotoxicity. J. Biol. Chem. 278, 49,819–49,827.Google Scholar
  46. Terro F., Czech C., Esclaire F., Elyaman W., Yardin C., Baclet M. C., et al. (2002) Neurons overexpressing mutant presenilin-1 are more sensitive to apoptosis induced by endoplasmic reticulum-Golgi stress. J. Neurosci. Res. 69, 530–539.PubMedCrossRefGoogle Scholar
  47. Tirasophon W., Lee K., Callaghan B., Welihinda A., and Kaufman R. J. (2000) The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev. 14, 2725–2736.PubMedCrossRefGoogle Scholar
  48. Travers K. J., Patil C. K., Wodicka L., Lockhart D. J., Weissman J. S., and Walter P. (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258.PubMedCrossRefGoogle Scholar
  49. Trushina E., Heldebrant M. P., Perez-Terzic C. M., Bortolon R., Kovtun I. V., Badger J. D. 2nd, et al. (2003) Microtubule destabilization and nuclear entry are sequential steps leading to toxicity in Huntington's disease. Proc. Natl. Acad. Sci. U.S.A. 100, 12,171–12,176.CrossRefGoogle Scholar
  50. Zaidi A. and Michaelis M. L. (1999) Effects of reactive oxygen species on brain synaptic plasma membrane Ca(2+)-ATPase. Free Radic. Biol. Med. 27, 810–821.PubMedCrossRefGoogle Scholar
  51. Zaidi A., Barron L., Sharov V.S., Schoneich C., Michaelis E. K., and Michaelis M. L. (2003) Oxidative inactivation of purified plasma membrane Ca2+-ATPase by hydrogen peroxide and protection by calmodulin. Biochemistry 42, 12,001–12,010.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Kathleen I. Seyb
    • 1
  • Sabah Ansar
    • 1
  • Jennifer Bean
    • 1
  • Mary L. Michaelis
    • 1
  1. 1.Department of Pharmacology and ToxicologyUniversity of KansasLawrence

Personalised recommendations