GABA receptor-mediated effects in the peripheral nervous system

A cross-interaction with neuroactive steroids
  • Valerio Magnaghi
  • Marinella Ballabio
  • Antonio Consoli
  • Jeremy J. Lambert
  • Ilaria Roglio
  • Roberto C. Melcangi
Original Article


γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the adult mammalian central nervous system (CNS), exerts its action via an interaction with specific receptors (e.g., GABAA and GABAB). These receptors are expressed not only in neurons but also on glial cells of the CNS, which might represent a target for the allosteric action of neuroactive steroids. Herein, we have demonstrated first that in the peripheral nervous system (PNS), the sciatic nerve and myelin-producing Schwann cells express both GABAA and GABAB receptors. Specific ligands, muscimol and baclofen, respectively, control Schwann-cell proliferation and expression of some specific myelin proteins (i.e., glycoprotein P0 and peripheral myelin protein 22 [PMP22]). Moreover, the progesterone (P) metabolite allopregnanolone, acting via the GABAA receptor, can influence PMP22 synthesis. In addition, we demonstrate that P, dihydroprogesterone, and allopregnanolone influence the expression of GABAB subunits in Schwann cells. The results suggest, at least in the myelinating cells of the PNS, a cross-interaction within the GABAergic receptor system, via GABAA and GABAB receptors and neuroactive steroids.

Index Entries

Peripheral nervous system Schwann cell myelin GABAA receptor GABAB receptor progesterone allopregnanolone 


  1. Al-Dahan M. I. and Thalmann R. H. (1996) Progesterone regulates gamma-aminobutyric acid B (GABA-B) receptors in the neocortex of female rats. Brain Res. 727, 40–48.PubMedCrossRefGoogle Scholar
  2. Barbaccia M. L., Colombo G., Affricano D., Carai M. A., Vacca G., Melis S., et al. (2002) GABA(B) receptor-mediated increase of neurosteroids by gamma-hydroxybutyric acid. Neuropharmacology 42, 782–791.PubMedCrossRefGoogle Scholar
  3. Barres B. A., Koroshetz W. J., Swartz K. J., Chun L. L., and Corey D. P. (1990) Ion channel expression by white matter glia: the O-2A glial progenitor cell. Neuron 4, 507–524.PubMedCrossRefGoogle Scholar
  4. Belelli D. and Lambert J. J. (2005) Neurosteroids: endogenous regulators of the GABA-A receptor. Nat. Rev. Neurosci. 6, 565–575.PubMedCrossRefGoogle Scholar
  5. BenAri Y. (2002) Excitatory actions of GABA during development the nature of the nurture. Nat. Rev. Neurosci., 3, 728–739.CrossRefGoogle Scholar
  6. Berger T., Walz W., Schnitzer J., and Kettenmann H. (1992) GABA- and glutamate-activated currents in glial cells of the mouse corpus callosum slice. J. Neurosci. Res. 31, 21–27.PubMedCrossRefGoogle Scholar
  7. Bettler B., Kaupmann K., Mosbacher J., and Gassmann M. (2004) Molecular structure and physiological functions of GABA(B) receptors. Physiol. Rev. 84, 835–867.PubMedCrossRefGoogle Scholar
  8. Bhisitkul R. B., Villa J. E., and Kocsis J. D. (1987) Axonal GABA receptors are selectively present on normal and regenerated sensory fibers in rat peripheral nerve. Exp. Brain Res. 66, 659–663.PubMedCrossRefGoogle Scholar
  9. Bovolin P., Santi M. R., Puia G., Costa E., and Grayson D. (1992) Expression patterns of gamma-aminobutyric acid type A receptor subunit mRNAs in primary cultures of granule neurons and astrocytes from neonatal rat cerebella. Proc. Natl. Acad. Sci. U. S. A. 89, 9344–9348.PubMedCrossRefGoogle Scholar
  10. Bowery N. G. and Enna S. J. (2000) γ-Aminobutyric acidB receptors: first of the functional metabotropic heterodimers. J. Pharmacol. Exp. Ther. 292, 2–7.PubMedGoogle Scholar
  11. Bowery N. G., Doble A., Hill D. R., Hudson A. L., Shaw J. S., Turnbull M. J., and Warrington R. (1981) Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur. J. Pharmacol. 71, 53–70.PubMedCrossRefGoogle Scholar
  12. Bowery N., Enna S. J., and Olsen R. W. (2004) Six decades of GABA. Biochem. Pharmacol. 68, 1477–1478.PubMedCrossRefGoogle Scholar
  13. Bowery N. G., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Shaw J., and Turnbull M. (1980) (−)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283, 92–94.PubMedCrossRefGoogle Scholar
  14. Bronstein J. M. (2000) Function of tetraspan proteins in the myelin sheath. Curr. Opin. Neurobiol. 10, 552–557.PubMedCrossRefGoogle Scholar
  15. Brown D. A. and Marsh S. (1978) Axonal GABA-receptors in mammalian peripheral nerve trunks. Brain Res. 156, 187–191.PubMedCrossRefGoogle Scholar
  16. Brown D. A., Adams P. R., Higgins A. J., and Marsh S. (1979) Distribution of GABA-receptors and GABA-carriers in the mammalian nervous system. J. Physiol. (Paris) 75, 667–671.Google Scholar
  17. Callachan H., Cottrell G. A., Hather N. Y., Lambert J. J., Nooney J. M., and Peters J. A. (1987) Modulation of the GABA-A receptor by progesterone metabolites. Proc. R. Soc. Lond. B. Biol. Sci. 231, 359–369.PubMedCrossRefGoogle Scholar
  18. Calver A. R., Medhurst A. D., Robbins M. J., Charles K. J., Evans M. L., Harrison D. C., et al. (2000) The expression of GABAB1 and GABAB2 receptor subunits in the CNS differs from that in peripheral tissues. Neuroscience 100, 155–170.PubMedCrossRefGoogle Scholar
  19. Calver A. R., Robbins M. J., Cosio G., Rice S. Q., Babbs A. J. Hirst W. D., et al. (2001). The C-terminal domains of the GABA-B receptor subunits mediate intracellular trafficking but are not required for receptor signalling. J. Neurosci. 21, 1203–1210.PubMedGoogle Scholar
  20. Charles K. J., Deuchars J., Davies C. H., and Pangalos M. N. (2003) GABAB receptor subunit expression in glia. Mol. Cell. Neurosci. 24, 214–223.PubMedCrossRefGoogle Scholar
  21. Charles K. J., Evans M. L., Robbins M. J., Calver A. R., Leslie R. A., and Pangalos M. N. (2001) Comparative immunohistochemical localisation of GABAB1a, GABAB1b, and GABAB2 subunits in rat brain, spinal cord and dorsal root ganglion. Neuroscience 106, 447–467.PubMedCrossRefGoogle Scholar
  22. Clark J. A., Mezey E., Lam A. S., and Bonner T. I. (2000) Distribution of the GABAB receptor gb2 in rat CNS. Brain Res. 860, 41–52.PubMedCrossRefGoogle Scholar
  23. Concas A., Mostallino M. C., Porcu P., Follesa P., Barbaccia M. L., Trabucchi M., et al. (1998) Role of brain allopregnanolone in the plasticità of γ-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc. Natl. Acad. Sci. U. S. A. 95, 13284–13289.PubMedCrossRefGoogle Scholar
  24. Desarmenien M., Feltz P., Occhipinti G., Santangelo F., and Schlichter R. (1984) Coexistence of GABA-A and GABA-B receptors on A delta and C primary afferents. Br. J. Pharmacol. 81, 327–333.PubMedGoogle Scholar
  25. Deschennes M., Feltz P., and Lamour Y. (1976) A model for an estimate in vivo of the ionic basis of presynaptic inhibition: an intracellular analysis of the GABA-induced depolarization in rat dorsal root ganglia. Brain Res. 118, 486–493.CrossRefGoogle Scholar
  26. Do-Rego J. L., Mensah-Nyagan G. A., Beaujean D., Vaudry D., Sieghart W., Luu-The V., et al. (2000). γ-Aminobutyric acid, acting through γ-aminobutyric acid type A receptors, inhibits the biosynthesis of neurosteroids in the frog hypothalamus. Proc. Natl. Acad. Sci. U. S. A. 97, 13925–13930.PubMedCrossRefGoogle Scholar
  27. Farrant M. and Nusser Z. (2005) Variation of an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat. Rev. Neurosci. 6, 215–229.PubMedCrossRefGoogle Scholar
  28. Frye C. A., Duncan J. E., Basham M., and Erkine M. S. (1996a) Behavioral effects of 3alpha-androstanediol. II: hypothalamic and preoptic area actions via a GABAergic mechanism. Behav. Brain Res. 79, 119–130.PubMedCrossRefGoogle Scholar
  29. Frye C. A., Van Keuren K. R., and Erkine M. S. (1996b) Behavioral effects of 3alpha-androstanediol. I: modulation of sexual receptivity and promotion of GABA-stimulated chloride flux. Behav. Brain Res. 79, 109–118.PubMedCrossRefGoogle Scholar
  30. Gago N., El-Etr M., Sananès N., Cadepond F., Samule D., Avellana-Adalid V., et al. (2004) 3α, 5α-Tetrahydroprogesterone (allopregnanolone) and γ-aminobutyric acid: autocrine/paracrine interactions in the control of neonatal PSA-NCAM+ progenitor proliferation. J. Neurosci. Res. 78, 770–783.PubMedCrossRefGoogle Scholar
  31. Galanopoulou A. S., Kyrozis A., Claudio O. I., Stanton P. K., and Moshe S. L. (2003) Sex-specific KCC2 expression and GABA(A) receptor function in rat substantia nigra. Exp. Neurol. 183, 628–637.PubMedCrossRefGoogle Scholar
  32. Gallagher J. P., Higashi H., and Nishi S. (1978) Characterization and ionic basis of GABA-induced depolarization recorded in vitro from cat primary afferent neurons. J. Physiol. (Lond.) 275, 263–282.Google Scholar
  33. Gavrilovic J., Raff M., and Cohen J. (1984) GABA uptake by purified rat Schwann cells in culture. Brain Res. 303, 183–185.PubMedCrossRefGoogle Scholar
  34. Gilbert P., Kettenmann H., and Schachner M. (1984) Gamma-aminobutyric acid directly depolarizes cultured oligodendrocytes. J. Neurosci. 4, 561–569.PubMedGoogle Scholar
  35. Guarneri P., Guarneri R., Cascio C., Piccoli F., and Papadopoulos V. (1995) γ-Aminobutyric acid type A/benzodiazepine receptors regulate rat retina neurosteroidogenesis. Brain Res. 683, 65–72.PubMedCrossRefGoogle Scholar
  36. Hosli E., Otten U., and Hosli L. (1997) Expression of GABA(A) receptors by reactive astrocytes in explant and primary cultures of rat CNS. Int. J. Dev. Neurosci. 15, 949–960.PubMedCrossRefGoogle Scholar
  37. Ige A. O., Bolam J. P., Billinton A., White J. H., Marshall F. H., and Emson P. C. (2000) Cellular and sub-cellular localisation of GABAB(1) and GABAB(2) receptor proteins in the rat cerebellum. Mol. Brain Res. 83, 72–80.PubMedCrossRefGoogle Scholar
  38. Inoue M. and Akaike N. (1988) Blockade of γ-aminobutyric acid-gated chloride current in frog sensory neurons by picrotoxin. Neurosci. Res. 5, 380–394.PubMedCrossRefGoogle Scholar
  39. Isomoto S., Kaibara M., Sakurai-Yamashita Y., Nagayama Y., Uezono Y., Yano K., and Taniyama K. (1998) Cloning and tissue distribution of novel splice variants of the rat GABAB receptor. Biochem. Biophys. Res. Commun. 253, 10–15.PubMedCrossRefGoogle Scholar
  40. Israel J. M., Schipke C. G., Ohlemeyer C., Theodosis D. T., and Kettenmann H. (2003) GABAA receptor-expressing astrocytes in the supraoptic nucleus lack glutamate uptake and receptor currents. Glia 44, 102–110.PubMedCrossRefGoogle Scholar
  41. Jones K. A., Borowsky B., Tamm J. A., Craig D. A., Durkin M. M., Dai M., et al. (1998) GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396, 674–679.PubMedCrossRefGoogle Scholar
  42. Jow F, Chiu D., Lim H. K., Novak T., and Lin S. (2004) Production of GABA by cultured hippocampal glial cells. Neurochem. Int. 45, 273–283.PubMedCrossRefGoogle Scholar
  43. Kang J., Jiang L., Goldman S. A., and Nedergaard M. (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692.PubMedCrossRefGoogle Scholar
  44. Kaupmann K., Huggel K., Heid J., Flor P. J., Bischoff S., Mickel S. J., et al. (1997) Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239–246.PubMedCrossRefGoogle Scholar
  45. Kaupmann K., Malitschek B., Schuler V., Heid J., Froestl W., Beck P., et al. (1998) GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687.PubMedCrossRefGoogle Scholar
  46. Keller A. F., Breton J. D., Schlichter R., and Poisbeau P. (2004) Production of 5alpha-reduced neurosteroids is developmentally regulated and shapes GABA(A) miniature IPSCs in lamina II of the spinal cord. J. Neurosci. 24, 907–915.PubMedCrossRefGoogle Scholar
  47. Kelly M. J., Qiu J., Wagner E. J., and Ronnekliev O. K. (2003) Rapid effects of estrogen on G protein-coupled receptor activation of potassium channels in the central nervous system (CNS). J. Steroid Biochem. Mol. Biol. 83, 187–193.CrossRefGoogle Scholar
  48. Kettenmann H., Gilbert P., and Schnachner M. (1984) Depolarization of cultured oligodendrocytes by glutamate and GABA. Neuroci. Lett. 47, 271–276.CrossRefGoogle Scholar
  49. Kirchhoff F. and Kettenmann H. (1992) GABA triggers [Ca2+]i increase in murine precursor cells of the oligodendrocyte lineage. Eur. J. Neurosci. 4, 1049–1058.PubMedCrossRefGoogle Scholar
  50. Kuner R., Kohr G., Grunewald S., Eisenhardt G., Bach A., and Kornau H.-C. (1999) Role of heteromer formation in GABAB receptor function. Science 283, 74–77.PubMedCrossRefGoogle Scholar
  51. Kunkel D. D., Hendrickson A. E., Wu J.-Y., and Schwartzkroin P. A. (1986) Glutamic acid decarboxylase (GAD) immunocytochemistry of developing rabbit hippocampus. J. Neurosci. 6, 541–552.PubMedGoogle Scholar
  52. Lambert J. J., Belelli D., Peden E., Vardy A. W., and Peters J. A. (2003) Neurosteroid modulation of GABA-A receptors. Prog. Neurobiol. 71, 67–80.PubMedCrossRefGoogle Scholar
  53. LeBlanc A. C., Windebank A. J., and Poduslo J. F. (1992) Po gene expression in Schwann cells is modulated by an increase of cAMP which is dependent on the presence of axons. Mol. Brain Res. 12, 31–38.PubMedCrossRefGoogle Scholar
  54. Lee M. M., Badache A., and DeVries G. H. (1999) Phosphorylation of CREB in axon-induced Schwann cell proliferation. J. Neurosci. Res. 55, 702–712.PubMedCrossRefGoogle Scholar
  55. Liske S. and Morris M. E. (1994) Extrasynaptic effects of GABA (gamma-aminobutyric acid) agonists on myelinated axons of peripheral nerve. Can. J. Physiol. Pharmacol. 72, 368–374.PubMedGoogle Scholar
  56. Liu Q. Y., Schaffner A. E., Chang Y. H., Maric D., and Barker J. L. (2000) Persistent activation of GABA(A) receptor/Cl-channels by astrocyted-derived GABA in cultured embryonic rat hippocampal neurons. J. Neurophysiol. 84, 1392–1403.PubMedGoogle Scholar
  57. Magnaghi V., Ballabio M., Cavarretta I. T. R., Froestl W., Lambert J. J., Zucchi I., and Melcangi R. C. (2004a) GABAB receptors in Schwann cells influence proliferation and myelin protein expression. Eur. J. Neurosci. 19, 2641–2649.PubMedCrossRefGoogle Scholar
  58. Magnaghi V., Ballabio M., Gonzalez L. C., Leonelli E., Motta M., and Melcangi R. C. (2004b) The synthesis of glycoprotein Po and peripheral myelin protein 22 in sciatic nerve of male rats is modulated by testosterone metabolites. Mol. Brain Res. 126, 67–73.PubMedCrossRefGoogle Scholar
  59. Magnaghi V., Cavarretta I., Galbiati M., Martini L., and Melcangi R. C. (2001) Neuroactive steroids and peripheral myelin proteins. Brain Res. Rev. 37, 360–371.PubMedCrossRefGoogle Scholar
  60. Maguire J. L., Stell B. M., Rafizadeh M., and Mody I. (2005) Ovarian cycle-linked changes in GABA-A receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat. Rev. Neurosci. 8, 797–804.CrossRefGoogle Scholar
  61. Majewska M. D., Harrison N. L., Schwartz R. D., Barker J. L., and Paul S. M. (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232, 1004–1007.PubMedCrossRefGoogle Scholar
  62. Mantelas A., Stamatakis A., Kazanis I., Philippidis H., and Stylianopoulou F. (2003) Control of neuronal nitric oxide synthase and brain-derived neurotrophic factor levels by GABA-A receptors in the developing rat cortex. Dev. Brain Res. 145, 185–195.CrossRefGoogle Scholar
  63. Margeta-Mitrovic M., Mitrovic I., Riley R. C., Jan L. Y., and Basbaum A. I. (1999) Immunohistochemical localization of GABAB receptors in the rat central nervous system. J. Comp. Neurol. 405, 299–321.PubMedCrossRefGoogle Scholar
  64. Marshall F. H., Jones K. A., Kaupmann K., and Bettler B. (1999) GABAB receptors—the first 7TM heterodimers. Trends Pharmacol. Sci. 20, 396–399.PubMedCrossRefGoogle Scholar
  65. McCarthy M. M., Amateau S. K., and Mong J. A. (2002) Steroid modulation of astrocytes in the neonatal brain: implications for adult reproductive function. Biol. Reprod. 67, 691–698.PubMedCrossRefGoogle Scholar
  66. Melcangi R. C., Azcoitia I., Ballabio M., Cavarretta I., Gonzalez L. C., Leonelli E., et al. (2003) Neuroactive steroids influence peripheral myelination: a promising opportunity for preventing or treating age-dependent disfunctions of peripheral nerves. Prog. Neurobiol. 71, 57–66.PubMedCrossRefGoogle Scholar
  67. Melcangi R. C., Cavarretta I. T. R., Ballabio M., Leonelli E., Schenone A., Azcoitia I. et al. (2005) Peripheral nerves: a target for the action of neuroactive steroids. Brain Res. Rev. 48, 328–338.PubMedCrossRefGoogle Scholar
  68. Melcangi R. C., Magnaghi V., Cavarretta I., Zucchi I., Bovolin P., D'Urso D., and Martini L. (1999) Progesterone derivatives are able to influence peripheral myelin protein 22 and Po gene expression: possible mechanisms of action. J. Neurosi. Res. 56, 349–357.CrossRefGoogle Scholar
  69. Melcangi R. C., Magnaghi V., Galbiati M., Ghelarducci B., Sebastiani L., and Martini L. (2000a) The action of steroid hormones on peripheral myelin proteins: a possible new tool for the rebuilding of myelin? J. Neurocytol. 29, 327–339.PubMedCrossRefGoogle Scholar
  70. Melcangi R. C., Magnaghi V., and Martini L. (2000b) Aging in peripheral nerves: regulation of myelin protein genes by steroid hormones. Prog. Neurobiol. 60, 291–308.PubMedCrossRefGoogle Scholar
  71. Mensah-Nyagan A. G., Do-Rego J. L., Beaujean D., Luuthe V., Pelletier G., and Vaudry H. (2001) Regulation of neurosteroi biosyntheis in the forg diencephalons by GABA and endozepines. Horm. Behav. 40, 218–225.PubMedCrossRefGoogle Scholar
  72. Mirsky R. and Jessen K. R. (1999) The neurobiology of Schwann cells. Brain Pathol. 19, 293–311.Google Scholar
  73. Mirsky R., Parkinson D. B., Dong Z., Meier C., Calle E., Brennan A., et al. (2001) Regulation of genes involved in Schwann cell development and differentiation. Prog. Brain Res. 132, 3–12.PubMedCrossRefGoogle Scholar
  74. Morris M. E., Di Costanzo G. A., Fox S., and Werman R. (1983) Depolarizing action of GABA (γ-aminobutyric acid) on myelinated fibers of peripheral nerves. Brain Res. 278, 117–126.PubMedCrossRefGoogle Scholar
  75. Naef R. and Suter U. (1998) Many facets of the peripheral myelin protein MMP22 in myelination and disease. Microsc. Res. Tech. 41, 359–371.PubMedCrossRefGoogle Scholar
  76. Ng G. Y. K., Clark J., Coulombe N., Ethier N., Hebert T. E., Sullivan R., et al. (1999) Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J. Biol. Chem. 274, 7607–7610.PubMedCrossRefGoogle Scholar
  77. Obrietan K., Gao X. B., and Van Den Pol A. N. (2002) Excitatory actions of GABA increase BDNF expresion via a MAPK-CREB-dependent mechanism; a positive feedback circuit in developing neurons. J. Neurophysiol. 88, 1005–1015.PubMedGoogle Scholar
  78. Olsen R. W., Snowhill E. W., and Wamsley J. K. (1984) Autoradiographic localization of low affinity GABA receptors with [3H]bicuculline methochloride. Eur. J. Pharmacol. 99, 247–248.PubMedCrossRefGoogle Scholar
  79. Owens D. F. and Kriegstein A. R. (2002) Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 3, 715–727.PubMedCrossRefGoogle Scholar
  80. Park-Chung M., Malayev A., Purdy R. H., Gibbs T. T., and Farb D. H. (1999). Sulfated and unsulfated steroids modulate gamma-aminobutyric acid A receptor function through distinct sites. Brain Res. 830, 72–87.PubMedCrossRefGoogle Scholar
  81. Pfaff T., Malitschek B., Kaupmann K., Prézeau L., Pin J.-P., Bettler B., and Karschin A. (1999) Alternative splicing generates a novel isoform of the rat metabotropic GABABR1 receptor. Eur. J. Neurosci. 11, 2874–2882.PubMedCrossRefGoogle Scholar
  82. Puia G., Santi M. R., Vicini S., Pritchett D. B., Purdy R. H., Paul S. M., et al. (1990) Neurosteroids act on recombinant human GABAA receptors. Neuron 4, 759–765.PubMedCrossRefGoogle Scholar
  83. Quarles R. H. (1997) Glycoproteins of myelin sheaths. J. Mol. Neurosci. 8, 1–12.PubMedCrossRefGoogle Scholar
  84. Reddy D. S. (2003) Pharmacology of endogenous neuroactive steroids. Crit. Rev. Neurobiol. 15, 197–234.PubMedCrossRefGoogle Scholar
  85. Rupprecht R. and Holsboer F. (1999) Neuroactivesteroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci. 22, 410–416.PubMedCrossRefGoogle Scholar
  86. Sanger G. J., Munonyara M. L., Dass N., Prosser H., Pangalos M. N., and Parsons M. E. (2002) GABAB receptor function in the ileum and urinary bladder of wildtype and GABAB1 subunit null mice. Auton. Autacoid. Pharmacol. 22, 147–154.PubMedCrossRefGoogle Scholar
  87. Sanna E., Talani G., Busonero F., Pisu M. G., Pudy R. H., Serra M., and Biggio G. (2004) Brain steroidogenesis mediates ethanol modulation of GABA-A receptor activity in rat hippocampus. J. Neurosci. 24, 6521–6530.PubMedCrossRefGoogle Scholar
  88. Semyanov A., Walker M. C., and Kullmann D. M. (2003) GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat. Neurosci. 6, 484–490.PubMedGoogle Scholar
  89. Shu H.-J., Eisenman L. N., Jinadasa D., Covey D. F., Zorumski C. F., and Mennerick S. (2004) Slow actions of neuroactive steroids at GABA-A receptors. J. Neurosci. 24, 6667–6675.PubMedCrossRefGoogle Scholar
  90. Sieghart W. and Sperk G. (2002) Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr. Top. Med. Chem. 2, 795–816.PubMedCrossRefGoogle Scholar
  91. Steiger J. L., Bandyopadhyay S., Farb D. H., and Russek S. J. (2004) cAMP response element-binding brotein, activating transcription factor-4, and upstream stimulatory factor differentially control hippocampal GABA-BR1a and GABA-BR1b subunit gene expression through alternative promoters. J. Neurosci. 24, 6115–6124.PubMedCrossRefGoogle Scholar
  92. Sun B. B. and Chiu S. Y. (1999) N-type calcium channels and their regulation by GABA-B receptors in axons of neonatal rat optic nerve. J. Neurosci. 19, 5185–5194.PubMedGoogle Scholar
  93. Thalmann R. H. and Tehrani M. H. J. (2000) Regulation of neocortical GABA-B receptor subunits by RU486 and progesterone. Soc. Neurosci. Abs. 8127.Google Scholar
  94. Towers S., Princivalle A., Billinton A., Edmunds M., Bettler B., Urban L., et al. (2000) GABAB receptor protein and mRNA distribution in rat spinal cord and dorsal root ganglia. Eur. J. Neurosci. 12, 3201–3210.PubMedCrossRefGoogle Scholar
  95. Valeyev A. Y., Hackman J. C., Holohean A. M., Wood P. M., Katz J. L., and Davidoff R. A. (1999) GABA-induced Cl- current in cultured embryonic human dorsal root ganglion neurons. J. Neurophysiol. 82, 1–9.PubMedGoogle Scholar
  96. White J. H., Wise A., Main M. J., Green A., Fraser N. J., Disney G. H., et al. (1998) Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396, 679–682.PubMedCrossRefGoogle Scholar
  97. Whiting P. J., McAllister G., Vasilatis D., Bonnert T. P., Heavens R. P., Smith D. W., et al. (1997) Neuronally restricted splicing regulates the expression of a novel GABAA receptor subunit conferring atypical functional properties. J. Neurosci. 17, 5027–5037.PubMedGoogle Scholar
  98. Whiting P. J., McKernan R. M., and Wafford K. A. (1995) Structure and pharmacology of vertebrate GABAA receptor subtypes. Int. Rev. Neurobiol. 38, 95–138.PubMedCrossRefGoogle Scholar
  99. Wu F. S., Gibbs T. T., and Farb D. H. (1991) Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol. Pharmacol. 40, 333–336.PubMedGoogle Scholar
  100. Yu R., Follesa P., and Ticku M. K. (1996) Down-regulation of the GABA receptor subunits mRNA levels in mammalian cultured cortical neurons following chronic neurosteroid treatment. Mol. Brain Res. 41, 163–168.PubMedCrossRefGoogle Scholar
  101. Zagorodnyuk V. P., D'Antona G., Brookes S. J., and Costa M. (2002) Functional GABA-B receptors are present in guinea pig nodose ganglion cell bodies but not in peripheral mechanosensitive endings. Auton. Neurosci. 29, 20–29.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Valerio Magnaghi
    • 1
  • Marinella Ballabio
    • 1
  • Antonio Consoli
    • 1
  • Jeremy J. Lambert
    • 2
  • Ilaria Roglio
    • 1
  • Roberto C. Melcangi
    • 1
  1. 1.Department of Endocrinology and Center of Excellence on Neurodegenerative DiseasesUniversity of MilanMilanItaly
  2. 2.Department of Pharmacology and Neuroscience, Ninewells Hospital and Medical SchoolDundee UniversityDundeeScotland, UK

Personalised recommendations