Journal of Molecular Neuroscience

, Volume 28, Issue 1, pp 53–64 | Cite as

Motoneuron injury and repair

New perspectives on gonadal steroids as neurotherapeutics
  • Julie E. Tetzlaff
  • Christopher B. Huppenbauer
  • Lisa Tanzer
  • Thomas D. Alexander
  • Kathryn J. Jones
Original Article


In this review, we will summarize recent work from our laboratory on the role of gonadal steroids as neuroprotective agents in motoneuron viability following cell stress. Three motoneuron models will be discussed: developing axotomized hamster facial motoneurons (FMNs); adult axotomized mouse FMNs; and immortalized, cultured mouse spinal motoneurons subjected to heat shock. New work on two relevant motoneuron proteins, the survival of motor neuron protein, and neuritinor candidate plasticity-related gene 15, indicates differential steroid regulation of these two proteins after axotomy. The concept of gonadal steroids as cellular stress correction factors and the implications of this for acute neurological injury situations will be presented as well.

Index Entries

Testosterone estrogen facial motoneurons mouse hamster immortalized mouse spinal motoneurons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson K. and Talbot K. (2003) Spinal muscular atrophies reveal motor neuron vulnerability to defects in ribonucleoprotein handling. Curr. Opin. Neurol. 16, 595–599.PubMedGoogle Scholar
  2. Azcoitia I., Sierra A., and Garcia-Segura L. M. (1999) Neuroprotective effects of estradiol in the adult rat hippocampus: interaction with insulin-like growth factor-I signalling. J. Neurosci. Res. 58, 815–822.PubMedGoogle Scholar
  3. Baba N., Koji T., Itoh M., and Mizuno A. (1999) Reciprocal changes in the expression of Bcl-2 and Bax in hypoglossal nucleus after axotomy in adult rats: possible involvement in the induction of neuronal cell death. Brain Res. 827, 122–129PubMedGoogle Scholar
  4. Baron-Delage S. Echaniz-Laguna A., Melki J., and Beretta L. (2000) Interferons and IRF-1 induce expression of the survival motor neuron (SMN) genes. Mol. Med. 6, 957–968.PubMedGoogle Scholar
  5. Behl C. (2002) Oestrogen as a neuroprotective hormone. Nat. Rev. Neurosci. 3, 433–442.PubMedGoogle Scholar
  6. Benten W. P., Guo Z., Krucken J., and Wunderlich F. (2004) Rapid effects of androgens in macrophages. Steroids 69, 585–590.PubMedGoogle Scholar
  7. Cantallops I., Haas K., and Cline H. T. (2000) Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo. Nat. Neurosci. 3, 1004–1011.PubMedGoogle Scholar
  8. Castoria G., Lombardi M., Barone M. V., Bilancio A., Di Domenico M. DeFalco A., et al. (2004) Rapid signalling pathway activation by androgens in epithelial and stromal cells. Steroids 69, 517–522.PubMedGoogle Scholar
  9. Chambraud B., Berry M., Redeuilh G., Chambon P., and Baulieu E. E. (1990) Several regions of human estrogen receptor are involved in the formation of receptor-heat shock protein 90 complexes. J. Biol. Chem. 265, 20686–20691.PubMedGoogle Scholar
  10. Clancy A. N., Whitman C., Michael R. P., and Albers H. E. (1994) Distribution of androgen receptor-like immunoreactivity in the brains of intact and castrated male hamsters. Brain Res. Bull. 33, 325–332.PubMedGoogle Scholar
  11. Claus P., Bruns A. F., and Grothe C. (2004) Fibroblast growth factor-2 23 is binding directly to the survival of motoneuron protein and is associated with small nuclear RNAs. Biochem. J. 384, 559–565.PubMedGoogle Scholar
  12. Corriveau R. A., Shatz C. J., and Nedivi E. (1999) Dynamic regulation of cpg 15 during activity-dependent synaptic development in the mammalian visual system. J. Neurosci. 19, 7999–8008.PubMedGoogle Scholar
  13. Cragg B. G. (1970) What is the signal for chromatolysis? Brain Res. 23, 1–21.PubMedGoogle Scholar
  14. Dhandapani K. M., Hadman M., De Sevilla L., Wade M. F., Mahesh V. B., and Brann D. W. (2003) Astrocyte protection of neurons: role of transforming growth factorbeta signaling via a c-Jun-AP-1 protective pathway. J. Biol. Chem. 278, 43,329–43,339.Google Scholar
  15. Di Giovanni S., Faden A. I., Yakovlev A., Duke-Cohan J. S., Finn T., Thouin M. et al. (2005) Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth. FASEB J. 19, 153–154.PubMedGoogle Scholar
  16. Dong, L., Wang W., Wang F., Stoner M., Reed J. C., Harigai M., et al. (1999) Mechanisms of transcriptional activation of bcl-2 gene expression by 17beta-estradiol in breast cancer cells. J. Biol. Chem. 274, 32099–32107.PubMedGoogle Scholar
  17. Drengler S. M., Handa R. J., and Jones K. J. (1996a) Sex differences in androgen receptor mRNA levels and regulation in hamster facial motoneurons. Brain Res. Mol. Brain Res. 35, 131–138.PubMedGoogle Scholar
  18. Drengler S. M., Handa R. J., and Jones K. J. (1996b) Regulation of and rogen receptor mRNA expression in hamster facial motoneurons: differential effects of non-aromatizable and aromatizable androgens. Brain Res. Mol. Brain Res. 41, 8–15.PubMedGoogle Scholar
  19. Fan L. and Simard L. R. (2002) Survival motor neuron (SMN) protein: role in neurite outgrowth and neuromuscular maturation during neuronal differentiation and development. Hum. Mol. Genet. 11, 1605–1614.PubMedGoogle Scholar
  20. Fargo K. N. and Sengelaub D. R. (2004) Testosterone manipulation protects motoneurons from dendritic atrophy after contralateral motoneuron depletion. J. Comp. Neurol. 469, 96–106.PubMedGoogle Scholar
  21. Forger N. G., Wagner C. K., Contois M., Bengston L., and MacLennan A. J. (1998) Ciliary neurotrophic factor receptor alpha in spinal motoneurons is regulated by gonadal hormones. J. Neurosci. 18, 8720–8729.PubMedGoogle Scholar
  22. Fujino T., Lee W. C., and Nedivi E. (2003) Regulation of cpg 15 by signaling pathways that mediate synaptic plasticity. Mol. Cell. Neurosci. 24, 538–554.PubMedGoogle Scholar
  23. Garcia-Ovejero D., Veiga S., Garcia-Segura L. M., and Doncarlos L. L. (2002) Glia expression of estrogen and androgen receptors after rat brain injury. J. Comp. Neurol. 450, 256–271.PubMedGoogle Scholar
  24. Garcia-Segura L. M., Azcoitia I., and DonCarlos L. L. (2001) Neuroprotection by estradiol. Prog. Neurobiol. 63, 29–60.PubMedGoogle Scholar
  25. Grafstein B. (1975) The nerve cell body response to axotomy. Exp. Neurol. 48, 32–51.PubMedGoogle Scholar
  26. Gubitz A. K., Feng W., and Dreyfuss G. (2004) The SMN complex. Exp. Cell. Res. 296, 51–56.PubMedGoogle Scholar
  27. Guerra B., Diaz M., Alonso R., and Marin R. (2004) Plasma membrane oestrogen receptor mediates neuroprotection against beta-amyloid toxicity through activation of Raf-1/MEK/ERK cascade in septal-derived cholinergic SN56 cells. J. Neurochem. 91, 99–109.PubMedGoogle Scholar
  28. Han P. J., Shukla S., Subramanian P. S., and Hoffman P. N. (2004) Cyclic AMP elevates tubulin expression without increasing intrinsic axon growth capacity. Exp. Neurol. 189, 293–302.PubMedGoogle Scholar
  29. Hua Y. and Zhou J. (2004) Rpp20 interacts with SMN and is re-distributed into SMN granules in response to stress. Biochem. Biophys. Res. Commun. 314, 268–276.PubMedGoogle Scholar
  30. Huppenbauer C. B., Tanzer L., DonCarlos L. L., and Jones K. J. (2005). Gonadal steoid attenuation of developing hamster facial motoneuron loss by axotomy: equal efficacy of testosterone, dihydrotestosterone, and 17-beta estradiol. J. Neurosci. 25, 4004–4013.PubMedGoogle Scholar
  31. Jensen E. V., Greene G. L., Closs L. E., DeSombre E. R., and Nadji M. (1982) Receptors reconsidered: a 20-year perspective. Recent Prog. Horm. Res. 38, 1–40.PubMedGoogle Scholar
  32. Jones K. J. (1993) Gonadal steroids and neuronal regeneration. A therapeutic role. Adv. Neurol. 59, 227–240.PubMedGoogle Scholar
  33. Jones K. J. (1999) Steroid hormones and neurotrophisms: relationship to nerve injury. Metab. Brain Dis. 3, 1–18.Google Scholar
  34. Jones K. J., Alexander T. D., Brown T. J., and Tanzer L. (2000) Gonadal steroid enhancement of facial nerve regeneration: role of heat shock protein 70. J. Neurocytol. 29, 341–349PubMedGoogle Scholar
  35. Jones K. J. and Lavelle A. (1986) Differential effects of axotomy on immature and mature hamster facial neurons: a time course study of initial nucleolar and nuclear changes. J. Neurocytol. 15, 197–206.PubMedGoogle Scholar
  36. Jones K. J. and Oblinger M. M. (1994) Androgenic regulation of tubulin gene expression in axotomized hamster facial motoneurons. J. Neurosci. 14, 3620–3627.PubMedGoogle Scholar
  37. Jones K. J., Brown T. J., and Damaser M. (2001) Neuroprotective effects of gonadal steroids on regenerating peripheral motoneurons. Brain Res. Brain Res. Rev. 37, 372–382.PubMedGoogle Scholar
  38. Jones K. J., Durica T. E., and Jacob S. K. (1997) Gonadal steroid preservation of central synaptic input to hamster facial motoneurons following peripheral axotomy. J. Neurocytol. 26, 257–266.PubMedGoogle Scholar
  39. Jung-Testas I., Renoir M., Bugnard H., Greene G. L., and Baulieu E. E. (1992) Demonstration of steroid hormone receptors and steroid action in primary cultures of rat glial cells. J. Steroid Biochem. Mol. Biol. 41, 621–631.PubMedGoogle Scholar
  40. Kerr D. A., Nery J. P., Traystman R. J., Chau B. N., and Hardwick J. M. (2000) Survival motor neuron protein modulates neuron-specific apoptosis. Proc. Natl. Acad. Sci. U. S. A. 97, 13312–13317.PubMedGoogle Scholar
  41. Kinderman N. B. and Jones K. J. (1993) Testosterone enhancement of the nerve cell body response to injury: evidence using in situ hybridization and ribosomal DNA probes. J. Neurosci. 13, 1523–1532.PubMedGoogle Scholar
  42. Kinderman N. B., Harrington C. A., Drengler S. M., and Jones K. J. (1998) Ribbsomal RNA transcriptional activation and processing in hamster facial motoneurons: effects of axotomy with or without exposure to testosterone. J. Comp. Neurol. 401, 205–216.PubMedGoogle Scholar
  43. Kujawa K. A., and Jones K. J. (1990) Testosterone-induced acceleration of recovery from facial paralysis in male hamsters: temporal requirements of hormone exposure. Physiol. Behav. 48, 765–768.PubMedGoogle Scholar
  44. Kujawa K. A., Emeric E., and Jones K. J. (1991) Testosterone differentially regulates the regenerative properties of injured hamster facial motoneurons. J. Neurosci. 11, 3898–3906.PubMedGoogle Scholar
  45. Kujawa K. A., Jocob J. M., and Jones K. J. (1993) Testosterone regulation of the regenerative properties of injured rat sciatic motor neurons. J. Neurosci. Res. 35, 268–273.PubMedGoogle Scholar
  46. Kujawa K. A., Kinderman N. B., and Jones K. J. (1989) Testosterone-induced acceleration of recovery from facial paralysis following crush axotomy of the facial nerve in male hamsters. Exp. Neurol. 105, 80–85.PubMedGoogle Scholar
  47. Kujawa K. A., Tanzer L., and Jones K. J. (1995) Inhibition of the accelerative effects of testosterone on hamster facial nerve regeneration by the antiandrogen flutamide. Exp. Neurol. 133, 138–143.PubMedGoogle Scholar
  48. LaBella V., Cisterni C., Salaun D., and Pettmann B. (1998) Survival motor neuron (SMN) protein in rat is expressed as different molecular forms and is developmentally regulated. Eur. J. Neurosci. 10, 2913–2923.Google Scholar
  49. Langub M. C. Jr. and Watson R. E. Jr. (1992) Estrogen receptor-immunoreactiveglia, endothelia, and ependyma in guinea pig preoptic area and median eminence: electron microscopy. Endocrinology 130, 364–372.PubMedGoogle Scholar
  50. La Velle A. and La Velle F., eds. (1984) Neuronal Reaction to Injury During Development, Academic Press, New York.Google Scholar
  51. Lee W. C. and Nedivi E. (2002) Extended plasticity of visual cortex in dark-reared animals may result from prolonged expression of cpg 15-like genes. J. Neurosci. 22, 1807–1815.PubMedGoogle Scholar
  52. Lefebvre S., Burglen L., Reboullet S., Clermont O., Burlet P., Viollet L., et al. (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165.PubMedGoogle Scholar
  53. Lefebvre S., Burlet P., Liu Q., Bertrandy S., Clermont O., Munnich A., et al. (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet. 16, 265–269.PubMedGoogle Scholar
  54. Lieberman A. R. (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int. Rev. Neurobiol. 14, 49–124.PubMedGoogle Scholar
  55. Liu Q. and Dreyfuss G. (1996) A novel nuclear structure containing the survival of motor neurons protein. EMBO J. 15, 3555–3565.PubMedGoogle Scholar
  56. Lu M. L., Schneider M. C., Zheng Y., Zhang X., and Richie J. P. (2001) Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. J. Biol. Chem. 276, 13442–13451.PubMedGoogle Scholar
  57. MacLusky N. J., Chalmers-Redman R., Kay G., Ju W., Nethrapalli I. S., and Tatton W. G. (2003) Ovarian steroids reduce apoptosis induced by trophic insufficiency in nerve growth factor-differentiated PC12 cells and axotomized rat facial motoneurons. Neuroscience 118, 741–754.PubMedGoogle Scholar
  58. Majumder S., Varadharaj S., Ghoshal K., Monani U., Burghes A. H., and Jacob S. T. (2004) Identification of a novel cyclic AMP-response element (CRE-II) and the role of CREB-1 in the cAMP-induced expression of the survival motor neuron (SMN) gene. J. Biol. Chem. 279, 14803–14811.PubMedGoogle Scholar
  59. Marron T. U., Guerini V., Rusmini P., Sau D., Brevini T. A., Martini L., and Poletti A. (2005) Androgen-induced neurite outgrowth is mediated by neuritin in motor neurones. J. Neurochem. 92, 10–20.PubMedGoogle Scholar
  60. McWhorter M. L., Monani U. R., Burghes A. H., and Beattie C. E. (2003) Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motoraxon out growth and path finding. J. Cell. Biol. 162, 919–931.PubMedGoogle Scholar
  61. Meister G., Eggert C., and Fischer U. (2002) SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol. 12, 472–478.PubMedGoogle Scholar
  62. Mitra S. W., Hoskin E., Yudkovitz J., Pear L., Wilkinson H. A., Hayashi S., et al. (2003) Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology 144, 2055–2067.PubMedGoogle Scholar
  63. Monani U. R., Sendtner M., Coovert D. D., Parsons D. W., Andreassi C., Le T. T., et al. (2000) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(−/−) mice and results in a mouse with spinal muscular atrophy. Hum. Mol. Genet. 9, 333–339.PubMedGoogle Scholar
  64. Mor G., Nilsen J., Horvath T., Bechmann I., Brown S., Garcia-Segura L. M., and Naftolin F. (1999) Estrogen and microglia: a regulatory system that affects the brain. J. Neurobiol. 40, 484–496.PubMedGoogle Scholar
  65. Most S. P. (2004) Pacial nerve recovery in bcl2 overex-pression mice after crush injury. Arch. Facial Plast. Surg. 6, 82–87.PubMedGoogle Scholar
  66. Murashov A. K., Islamov R. R., McMurray R. J., Pak E. S., and Weidner D. A. (2004) Estrogen increases retrograde labeling of motoneurons: evidence of a nongenomic mechanism. Am. J. Physiol. Cell Physiol. 287, C320–326.PubMedGoogle Scholar
  67. Naeve G. S., Ramakrishnan M., Kramer R., Hevroni D., Citri Y., and Theill L. E. (1997) Neuritin: a gene induced by neural activity and neurotrophins that promotes neuritogenesis. Proc. Natl. Acad. Sci. U. S. A. 94, 2648–2653.PubMedGoogle Scholar
  68. Naghdi N. and Asadollahi A. (2004) Genomic and nongenomic effects of intrahippocampal microinjection of testosterone on long-term memory in male adult rats. Behav. Brain Res. 153, 1–6.PubMedGoogle Scholar
  69. Navascues J., Berciano M. T., Tucker K. E., Lafarga M., and Matera A. G. (2004) Targeting SMN to Cajal bodies and nuclear gems during neuritogenesis. Chromosoma 112, 398–409.PubMedGoogle Scholar
  70. Nedivi E., Fieldust S., Theill L. E., and Hevron D. (1996) Aset of genes expressed in response to light in the adult cerebral cortex and regulated during development. Proc. Natl. Acad. Sci. U. S. A. 93, 2048–2053.PubMedGoogle Scholar
  71. Nedivi E., Hevroni D., Naot D., Israeli D., and Citri Y. (1993) Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature 363, 718–722.PubMedGoogle Scholar
  72. Nedivi E., Javaherian A., Cantallops I., and Cline H. T. (2001) Developmental regulation of CPG15 expression in Xenopus. J. Comp. Neurol. 435, 464–473.PubMedGoogle Scholar
  73. Nedivi E., Wu G. Y., and Cline H. T. (1998) Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science 281, 1863–1866.PubMedGoogle Scholar
  74. Pagliardini S., Giavazzi A., Setola V., Lizier C., Di Luca M., DeBiasi S., and Battaglia G. (2000) Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal cord. Hum. Mol. Genet. 9, 47–56.PubMedGoogle Scholar
  75. Papakonstanti E. A., Kampa M., Castanas E., and Stournaras C. (2003) A rapid, nongenomic, signaling pathway regulates the actin reorganization induced by activation of membrane testosterone receptors. Mol. Endocrinol. 17, 870–881.PubMedGoogle Scholar
  76. Pellizzoni L., Kataoka N., Charroux B., and Dreyfuss G. (1998) A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95, 615–624.PubMedGoogle Scholar
  77. Perillo B., Sasso A., Abbondanza C., and Palumbo G. (2000) 17beta-estradiol inhibits apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive elements present in the coding sequence. Mol. Cell. Biol. 20, 2890–2901.PubMedGoogle Scholar
  78. Pratt W. B. and Toft D. O. (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18, 306–360.PubMedGoogle Scholar
  79. Raivich G., Bohatschek M., Da Costa C., Iwata O., Galiano M., Hristova M., et al. (2004) The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron 43, 57–67.PubMedGoogle Scholar
  80. Rakotoarivelo C., Petite D., Lambard S., Fabre C., Rouleau C., Lumbroso S., et al. (2004) Receptors to steroid hormones and aromatase are expressed by cultured motoneurons but not by glial cells derived from rat embryo spinal cord. Neuroendocrinology 80, 284–297.PubMedGoogle Scholar
  81. Razandi M., Oh P., Pedram A., Schnitzer J., and Levin E. R. (2002) ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol. Endocrinol. 16, 100–115.PubMedGoogle Scholar
  82. Razandi M., Pedram A., Greene G. L., and Levin E. R. (1999) Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERalpha and ERbeta expressed in Chinese hamster overy cells. Mol. Endocrinol. 13, 307–319.PubMedGoogle Scholar
  83. Razandi M., Pedram A., Park S. T., and Levin E. R. (2003) Proximal events in signaling by plasma membrane estrogen receptors. J. Biol. Chem. 278, 2701–2712.PubMedGoogle Scholar
  84. Remage-Healey L. and Bass A. H. (2004) Rapid, hierarchical modulation of vocal patterning by steroid hormones. J. Neurosci. 24, 5892–5900.PubMedGoogle Scholar
  85. Ribotta M. G., Menet V., and Privat A. (2004) Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice. Acta Neurochir. Suppl. 89, 87–92.Google Scholar
  86. Rossoll W., Jablonka S., Andreassi C., Kroning A. K., Karle K., Monani U. R., and Sendtner M. (2003) Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J. Cell Biol. 163, 801–812.PubMedGoogle Scholar
  87. Rossoll W., Kroning A. K., Ohndorf U. M., Steegborn C., Jablonka S., and Sendtner M. (2002) Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum. Mol. Genet. 11, 93–105.PubMedGoogle Scholar
  88. Singh M., Setalo G., Jr., Guan X., Warren M., and Toran-Allerand C. D. (1999) Estrogen-induced activation of mitogen-activated protein kinase in cerebral cortical explants: convergence of estrogen and neurotrophin signaling pathways. J. Neurosci. 19, 1179–1188.PubMedGoogle Scholar
  89. Sortino M. A., Chisari M., Merlo S., Vancheri C., Caruso M., Nicoletti F., et al. (2004) Glia mediates the neuroprotective action of estradiol on beta-amyloid-induced neuronal death. Endocrinology 145, 5080–5086.PubMedGoogle Scholar
  90. Streit W. J. (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40, 133–139.PubMedGoogle Scholar
  91. Sumner C. J., Huynh T. N., Markowitz J. A., Perhac J. S., Hill B., Coovert D. D., et al. (2003) Val proicacid increases SMN levels in spinal muscular atrophy patient cells. Ann. Neurol. 54, 647–654.PubMedGoogle Scholar
  92. Takuma K., Baba A., and Matsuda T. (2004) Astrocyte apoptosis: implications for neuroprotection. Prog. Neurobiol. 72, 111–127.PubMedGoogle Scholar
  93. Tanzer L. and Jones K. J. (1997) Gonadal steroid regulation of hamster facial nerve regeneration: effects of dihydrotestoterone and estradiol. Exp. Neurol. 146, 258–264.PubMedGoogle Scholar
  94. Tanzer L. and Jones K. J. (2004) Neurotherapeutic action of testosterone on hamster facial nerve regeneration: temporal window of effects. Horm. Behav. 45, 339–344.PubMedGoogle Scholar
  95. Tanzer L., Sengelaub D. R., and Jones K. J. (1999) Estrogen receptor expression in the facial nucleus of adult hamsters: does axotomy recapitulate development? J. Neurobiol. 39, 438–446.PubMedGoogle Scholar
  96. Tetzlaff J. E., Tanzer L. and Jones K. J. (2005a) Mechanisms of gonadal steroid-induced neuroprotection. Part I: Androgenic and estrogenic effects on mouse facial motoneuron survival and functional recovery following facial nerve injury, in review.Google Scholar
  97. Tetzlaff J. E., Tanzer L. and Jones K. J. (2005b) Mechanisms of gonadal steroid-induced neuroprotection. Part II: Androgenic and estrogenic effects on facial motoneuron survival following heat shock in vitro, in review.Google Scholar
  98. Wang Z. M., Dai C. F., Kanoh N., Chi, F. L., and Li K. Y. (2002) Apoptosis and expression of BCL-2 in facial motoneurons after facial nerve injury. Otol. Neurotol. 23, 397–404.PubMedGoogle Scholar
  99. Wehner K. A., Ayala L., Kim Y., Young P. J., Hosler B. A., Lorson C. L., et al. (2002) Survival motor neuron protein in the nucleolus of mammalian neurons. Brain Res. 945, 160–173.PubMedGoogle Scholar
  100. Wise P. M. (2002) Estrogens and neuroprotection. Trends Endocrinol. Metab. 13, 229–230.PubMedGoogle Scholar
  101. Yang L. Y., Verhovshek T., and Sengelaub D. R. (2004) Brain-derived neurotrophic factor and androgen interact in the maintenance of dendritic morphology in a sexually dimorphic rat spinal nucleus. Endocrinology 145, 161–168.PubMedGoogle Scholar
  102. Young P. J., Day P. M., Zhou J., Androphy, E. J., Morris G. E., and Lorson C. L. (2002) A direct interaction between the survival motor neuron protein and p53 and its relationship to spinal muscular atrophy. J. Biol. Chem. 277, 2852–2859.PubMedGoogle Scholar
  103. Yu W. H. (1982) Effect of testosterone on the regeneration of the hypoglossal nerve in rats. Exp. Neurol. 77, 129–141.PubMedGoogle Scholar
  104. Yu W. H. and Cao C. G. (1992) Testosterone fails to rescue moto neurons from axotomy-induced death in young rats. Neuroreport 3, 1042–1044.PubMedGoogle Scholar
  105. Yu W. H. and McGinnis M. Y. (2001) Androgen receptors in cranial nerve motor nuclei of male and female rats. J. Neurobiol. 46, 1–10.PubMedGoogle Scholar
  106. Yu W. H. and Srinivasan R. (1981) Effect of testosterone and 5 alpha-dihydrotestosterone on regeneration of the hypoglossal nerve in rats. Exp. Neurol. 71, 431–435.PubMedGoogle Scholar
  107. Zhang H. L., Pan F., Hong D., Shenoy S. M., Singer R. H., and Bassell G. J. (2003) Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization. J. Neurosci. 23, 6627–6637.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Julie E. Tetzlaff
    • 1
  • Christopher B. Huppenbauer
    • 1
  • Lisa Tanzer
    • 1
  • Thomas D. Alexander
    • 1
  • Kathryn J. Jones
    • 1
  1. 1.Department of Cell Biology, Neurobiology, and AnatomyLoyola University of Chicago Stritch School of MedicineMaywood

Personalised recommendations