Advertisement

Journal of Molecular Neuroscience

, Volume 27, Issue 3, pp 347–354 | Cite as

Mouse brain synaptosomes accumulate copper-67 efficiently by two distinct processes independent of cellular prion protein

  • Armin Giese
  • Malte Buchholz
  • Jochen Herms
  • Hans A. Kretzschmar
Original Article

Abstract

The prion protein (PrPC) is a copper-binding, cell-surface protein that plays an essential role in the etiology of transmissible spongiform encephalopathies. Atomic absorption spectroscopy studies have established that synaptosomal copper content is reduced in PrPC-deficient mice as compared with wild-type (WT) or PrP-overexpressing mice. To address the question of whether this is the result of a loss of function of PrPC in copper transport across the plasma membrane at the synapse, we have used synaptosomes incubated with 67Cu as a model system to characterize the mechanism of copper accumulation in nerve terminals. Our results demonstrate that mouse brain synaptosomes accumulate copper efficiently by at least two distinct mechanisms. In the presence of 1 mM EDTA, copper was taken up via a saturable high-affinity process that was moderately susceptible to competition by high concentrations of NiCl2. Uptake characteristics were clearly different in the presence of 400 µM histidine, with the most noticeable dissimilarities being considerably elevated uptake rates and moderate competition by ZnCl2 rather than NiCl2. No significant differences in copper uptake capability between WT and PrPC-knockout synaptosomes were observed under any of the experimental conditions tested in this study. Furthermore, preincubation of synaptosomes with an antibody binding to the copper-binding repeat region of the prion protein had no effect on copper uptake either. Taken together, our data indicate that synaptosomal copper uptake is independent of PrPC.

Keywords

Tg20 Mouse Prion Protein Bovine Spongiform Encephalopathy Molecular Neuroscience Volume Copper Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnea A., Hartter D. E., Cho G., Bhasker K. R., Katz B. M., and Edwards M. D. (1990) Further characterization of the process of in vitro uptake of radiolabeled copper by the rat brain. J. Inorg. Biochem. 40, 103–110.PubMedCrossRefGoogle Scholar
  2. Barnham K. J., McKinstry W. J., Multhaup G., Galatis D., Morton C. J., Curtain C. C., et al. (2003) Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. J. Biol. Chem. 278, 17,401–17,407.Google Scholar
  3. Bertinato J. and L’Abbe M. R. (2004) Maintaining copper homeostasis: regulation of copper-trafficking proteins in response to copper deficiancy or overload. J. Nutr. Biochem. 15, 316–322.PubMedCrossRefGoogle Scholar
  4. Brown L. R. and Harris D. A. (2003) Copper and zinc cause delivery of the prion protein from the plasma membrane to a subset of early endosomes and the Golgi. J. Neurochem. 87, 353–363.PubMedCrossRefGoogle Scholar
  5. Brown D. R., Qin K., Herms J. W., Madlung A., Manson J., Strome R., et al. (1997) The cellular prion protein binds copper in vivo. Nature 390, 684–687.PubMedCrossRefGoogle Scholar
  6. Büeler H., Fischer M., Lang Y., Bluethmann H., Lipp H. P., DeArmond S. J., et al. (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582.PubMedCrossRefGoogle Scholar
  7. Bush A. I. (2000) Metals and neuroscience. Curr. Opin. Chem. Biol. 4, 184–191.PubMedCrossRefGoogle Scholar
  8. Collinge J., Whittington M. A., Sidle K. C., Smith C. J., Palmer M. S., Clarke A. R., and Jefferys J. G. (1994) Prion protein is necessary for normal synaptic function. Nature 370, 295–297.PubMedCrossRefGoogle Scholar
  9. Deutsch C., Drown C., Rafalowska U., and Silver I. A. (1981) Synaptosomes from rat brain: morphology, compartmentation, and transmembrane pH and electrical gradients. J. Neurochem. 36, 2063–2072.PubMedCrossRefGoogle Scholar
  10. Hajos F. (1975) An improved method for the preparation of synaptosomal fractions in high purity. Brain Res. 93, 485–489.PubMedCrossRefGoogle Scholar
  11. Harris E. D., Qian Y., and Reddy M. C. M. (1998) Genes regulating copper metabolism. Mol. Cell. Biochem. 188, 57–62.PubMedCrossRefGoogle Scholar
  12. Hartter D. E. and Barnea A. (1988) Brain tissue accumulates 67copper by two ligand-dependent saturable processes. A high affinity, low capacity and a low affinity, high capacity process. J. Biol. Chem. 263, 799–805.PubMedGoogle Scholar
  13. Herms J., Tings T., Gall S., Madlung A., Giese A., Siebert H., et al. (1999) Evidence of presynaptic location and function of the prion protein. J. Neurosci. 19, 8866–8875.PubMedGoogle Scholar
  14. Horning M. S. and Trombley P. Q. (2001) Zinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms. J. Neurophysiol. 86, 1652–1660.PubMedGoogle Scholar
  15. Hornshaw M. P., McDermott J. R., and Candy J. M. (1995a) Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem. Biophys. Res. Commun. 207, 621–629.PubMedCrossRefGoogle Scholar
  16. Hornshaw M. P., McDermott J. R., Candy J. M., and Lakey J. H. (1995b) Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem. Biophys. Res. Commun. 214, 993–999.PubMedCrossRefGoogle Scholar
  17. Jackson G. S., Murray I, Hosszu L. L., Gibbs N., Waltho J. P., Clarke A. R., and Collinge J. (2001) Location and properties of metal-binding sites on the human prion protein. Proc. Natl. Acad. Sci. U. S. A. 98, 8531–8535.PubMedCrossRefGoogle Scholar
  18. Krasemann S., Groschup M. H., Harmeyer S., Hunsmann G., and Bodemer W. (1996) Generation of monoclonal antibodies against human prion proteins in PrP0/0 mice. Mol. Med. 2, 725–734.PubMedGoogle Scholar
  19. Leiva J., Palestini M., Tetas M., and Lopez J. (2000) Copper sensitivity in dorsal hippocampus slices. Arch. Ital. Biol. 138, 175–184.PubMedGoogle Scholar
  20. Linder M. C. (1991) Biochemistry of Copper, Plenum Press, New York.Google Scholar
  21. Mallucci G. R., Ratte S., Asante E. A., Linehan J., Gowland I., Jefferys J. G., and Collinge J. (2002) Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 21, 202–210.PubMedCrossRefGoogle Scholar
  22. McMahon H. T., Foran P., Dolly J. O., Verhage M., Wiegant V. M., and Nicholls D. G. (1992) Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action. J. Biol. Chem. 267, 21,338–21,343.Google Scholar
  23. Multhaup G., Scheuermann S., Schlicksupp A., Simons A., Strauss M., Kemmling A., et al. (2002) Possible mechanisms of APP-mediated oxidative stress in Alzheimer’s disease. Free Radic. Biol. Med. 33, 45–51.PubMedCrossRefGoogle Scholar
  24. Nalbandyan R. M. (1983) Copper in brain. Neurochem. Res. 8, 1211–1232.PubMedCrossRefGoogle Scholar
  25. Pan K. M., Stahl N., and Prusiner S. B. (1992) Purification and properties of the cellular prion protein from Syrian hamster brain. Protein Sci. 1, 1343–1352.PubMedCrossRefGoogle Scholar
  26. Pauly P. C. and Harris D. A. (1998) Copper stimulates endocytosis of the prion protein. J. Biol. Chem. 273, 33,107–33,110.CrossRefGoogle Scholar
  27. Prusiner S. B. (1998) Prions. Proc. Natl. Acad. Sci. U. S. A. 95, 13363–13383.PubMedCrossRefGoogle Scholar
  28. Sandoval M. E., Horch P., and Cotman C. W. (1978) Evaluation of glutamate as a hippocampal neurotransmitter: glutamate uptake and release from synaptosomes. Brain Res. 142, 285–299.PubMedCrossRefGoogle Scholar
  29. Schaefer M. and Gitlin J. D. (1999) Genetic disorders of membrane transport. IV. Wilson’s disease and Menkes disease. Am. J. Physiol. 276, G311-G314.PubMedGoogle Scholar
  30. Shmerling D., Hegyi I., Fischer M., Blättler T., Brandner S., Götz J., et al. (1998) Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93, 203–214.PubMedCrossRefGoogle Scholar
  31. Viles J. H., Cohen F. E., Prusiner S. B., Goodin D. B., Wright P. E., and Dyson H. J. (1999) Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc. Natl. Acad. Sci. U. S. A. 96, 2042–2047.PubMedCrossRefGoogle Scholar
  32. Waggoner D. J., Drisaldi B., Bartnikas T. B., Casareno R. L., Prohaska J. R., Gitlin D., and Harris D. A. (2000) Brain copper content and cuproenzyme activity do not vary with prion protein expression level. J. Biol. Chem. 275, 7455–7458.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Armin Giese
    • 1
  • Malte Buchholz
    • 1
  • Jochen Herms
    • 1
  • Hans A. Kretzschmar
    • 1
  1. 1.Zentrum für Neuropathologie und Prionforschung (ZNP)Ludwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations