Advertisement

Journal of Molecular Neuroscience

, Volume 27, Issue 3, pp 261–268 | Cite as

Analysis of microarray studies performed in the neurosciences

Short Review

Abstract

The application of microarray technology to basic and applied fields of science has been progressing rapidly and broadly since its initial description. The field of neuroscience stands to benefit particularly, as nervous tissue is the most transcriptionally active system within most biological organisms. Moreover, large numbers of cell and animal models have been created that mimic many biochemical and behavioral features of neurological states and diseases. In the present study, data on study designs, tissue sources, technology platforms, bioinformatic tools, and results obtained from 448 published microarray studies were collected. The data were then summarized to determine overall usage statistics of microarrays. Future directions and applications for microarrays in the neurosciences were then inferred from the data analyzed.

Index Entries

Microarray gene expression neuron neuroscience bioinformatics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball C. A., Sherlock G., Parkinson H., Rocca-Sera P., Brooksbank C., Causton H. C., et al. (2002) Standards for microarray data. Science 298, 539.PubMedCrossRefGoogle Scholar
  2. Barlow C. and Lockhart D. J. (2002) DNA arrays and neurobiology—what’s new and what’s next? Curr. Opin. Neurobiol. 12, 554–561.PubMedCrossRefGoogle Scholar
  3. Barrett T., Suzek T. O., Troup D. B., Wilhite S. E., Ngau W. C., Ledoux P., et al. (2005) NCBI GEO: mining millions of expression profiles—database and tools. Nucleic Acids Res. [database issue] 33, D562-D566.PubMedCrossRefGoogle Scholar
  4. Brazma A., Hingamp P., Quackenbush J., Sherlock G., Spellman P., Stoeckert C., et al. (2001) Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat. Genet. 29, 365–371.PubMedCrossRefGoogle Scholar
  5. Brazma A., Parkinson H., Sarkans U., Shojatalab M., Vilo J., Abeygunawardena N., et al. (2003) Array Express—a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 31, 68–71.PubMedCrossRefGoogle Scholar
  6. Ikeo K., Ishi-i J., Tamura T., Gojobori T., and Tateno Y. (2003) CIBEX: center for information biology gene expression database. C. R. Biol. 326, 1079–1082.PubMedCrossRefGoogle Scholar
  7. Mandel S., Weinreb O., and Youdim M. B. (2003) Using cDNA microarray to assess Parkinson’s disease models and the effects of neuroprotective drugs. Trends Pharmacol. Sci. 24, 184–191.PubMedCrossRefGoogle Scholar
  8. Marcotte E. R., Srivastava L. K., and Quirion R. (2001) DNA microarrays in neuropsychopharmacology. Trends Pharmacol. Sci. 22, 426–436.PubMedCrossRefGoogle Scholar
  9. Mirnics K. and Pevsner J. (2004) Progress in the use of microarray technology to study the neurobiology of disease. Nat. Neurosci. 7, 434–439.PubMedCrossRefGoogle Scholar
  10. Nisenbaum L. K. (2002) The ultimate chip shot: can microarray technology deliver for neuroscience? Genes Brain Behav. 1, 27–34.PubMedCrossRefGoogle Scholar
  11. Pittman J., Huang E., Dressman H., Horng C. F., Cheng S. H., Tsou M. H., et al. (2004) Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes. Proc. Natl. Acad. Sci. U. S. A. 101, 8431–8436.PubMedCrossRefGoogle Scholar
  12. Schena M. (2003) Microarray Analysis, John Wiley & Sons, Inc., Hoboken, NJ.Google Scholar
  13. Shilling P. D. and Kelsoe J. R. (2002) Functional genomics approaches to understanding brain disorders. Pharmacogenomics 3, 31–45.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.Department of Neuroscience, A. I. Virtanen InstituteKuopio UniversityKuopioFinland
  2. 2.Department of Computer ScienceKuopio UniversityKuopioFinland
  3. 3.Department of BiochemistryKuopio UniversityKuopioFinland

Personalised recommendations