Journal of Molecular Neuroscience

, Volume 27, Issue 1, pp 43–64 | Cite as

Second-generation antipsychotic drugs, olanzapine, quetiapine, and clozapine enhance neurite outgrowth in PC12 cells via P13K/AKT, ERK, and pertussis toxin-sensitive pathways

Original Article

Abstract

Second-generation antipsychotic drugs, olanzapine, quetiapine, and clozapine, were found to enhance neurite outgrowth induced by nerve growth factor (NGF) in PC12 cells. These drugs increased the number of cells bearing neurites, the length of primary neurites, and the size of the cell body of NGF-differentiated PC12 cells. In addition, the drugs induced sprouting of neurite-like processes in PC12 cells in the absence of NGF. Olanzapine, quetiapine, and clozapine enhanced the phosphorylation of Akt and ERK in combination with NGF, and specific inhibitors of these pathways attenuated these effects. Pretreatment of cells overnight with pertussis toxin had no effect on NGF-induced differentiation but significantly decreased the effects of the antipsychotic drugs on neurite outgrowth, suggesting that Gi/Go-coupled receptors are involved in the response to drug. A better understanding of the mechanisms underlying the effects of the second-generation drugs might suggest new therapeutic targets for enhancement of neurite outgrowth.

Index Entries

Akt antipsychotics ERK G proteins nerve growth factor neurite outgrowth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akam E. and Strange P. G. (2004) Inverse agonist properties of atypical antipsychotic drugs. Biochem. Pharmacol. 67, 2039–2045.PubMedCrossRefGoogle Scholar
  2. Andersson C., Hamer R. M., Lawler C. P., Mailman R. B., and Lieberman J. A. (2002) Striatal volume changes in the rat following long-term administration of typical and atypical antipsychotic drugs. Neuropsychopharmacology 27, 143–151.PubMedCrossRefGoogle Scholar
  3. Aravagiri M., Teper Y., and Marder S. R. (1999) Pharmacokinetics and tissue distribution of olanzapine in rats. Biopharm. Drug Dispos. 20, 369–377.PubMedCrossRefGoogle Scholar
  4. Bai O., Wei Z., Lu W., Bowen R., Keegan D., and Li, X.-M. (2002) Protective effects of typical antipsychotic drugs on PC12 cells after serum withdrawal. J. Neurosci. Res. 69, 278–283.PubMedCrossRefGoogle Scholar
  5. Bai O., Zhang H., and Li X.-M. (2004) Antipsychotic drugs clozapine and olanzapine upregulate bcl-2 mRNA and protein in rat frontal cortex and hippocampus. Brain Res. 1010, 81–86.PubMedCrossRefGoogle Scholar
  6. Baldessarini R. J., Centorrino F., Flood J. G., Volpicelli S. A., Huston-Lyons D., and Cohen B. M. (1993) Tissue concentrations of clozapine and its metabolites in the rat. Neuropsychopharmacology 9, 117–124.PubMedGoogle Scholar
  7. Bang O. S., Park E. K., Yang S. I., Lee S. R., Franke T. F., and Kang S. S. (2001) Overexpression of Akt inhibits NGF-induced growth arrest and neuronal differentiation of PC12 cells. J. Cell. Sci. 114, 81–88.PubMedGoogle Scholar
  8. Brazil D. P. and Hemmings B. A. (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem. Sci. 26, 657–664.PubMedCrossRefGoogle Scholar
  9. Cassano S., Di Lieto A., Cerillo R., and Avvedimento E. V. (1999) Membrane-bound cAMP-dependent protein kinase controls cAMP-induced differentiation in PC12 cells. J. Biol. Chem. 274, 32574–32579.PubMedCrossRefGoogle Scholar
  10. Cheng A., Wang S., Yang D., Xiao R., and Mattson M. P. (2003) Calmodulin mediates brain-derived neurotrophic factor cell survival signaling upstream of Akt kinase in embryonic neocortical neurons. J. Biol. Chem. 278, 7591–7599.PubMedCrossRefGoogle Scholar
  11. Ciani E., Virgili M., and Contestabile A. (2002) Akt pathway mediates a cGMP-dependent survival role of nitric oxide in cerebellar granule neurones. J. Neurochem. 81, 218–228.PubMedCrossRefGoogle Scholar
  12. Cussac D., Duqueyroix D., Newman-Tancredi A., and Millan M. J. (2002) Stimulation by antipsychotic agents of mitogen-activated protein kinase (MAPK) coupled to cloned, human (h)serotonin (5-HT)(1A) receptors. Psychopharmacology (Berl.) 162, 168–177.CrossRefGoogle Scholar
  13. Dago L., Bonde C., Peters D., Moller A., Bomholt S. F., Hartz J. B., et al. (2002a) NS 1231, a novel compound with neurotrophic-like effects in vitro and in vivo. J. Neurochem. 81, 17–24.PubMedCrossRefGoogle Scholar
  14. Dago L., Peters D., Meyer M., Hartz B., Kruse V., Drejer J., and Gronborg M. (2002b) NS-417, a novel compound with neurotrophic-like effects. Neurochem. Res. 27, 107–111.PubMedCrossRefGoogle Scholar
  15. de Rooij J., Zwartkruis F. J., Verheijen M. H., Cool R. H., Nijman S. M., Wittinghofer A., and Bos J. L. (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474–477.PubMedCrossRefGoogle Scholar
  16. Ditlevsen D. K., Kohler L. B., Pedersen M. V., Risell M., Kolkova K., Meyer M., et al. (2003) The role of phosphatidylinostiol 3-kinase in neural cell adhesion molecule-mediated neuronal differentiation and survival. J. Neurochem. 84, 546–556.PubMedCrossRefGoogle Scholar
  17. Dudek H., Datta S. R., Franke T. F., Birnbaum M. J., Yao R., Cooper G. M., et al. (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665.PubMedCrossRefGoogle Scholar
  18. Dwyer D. S., Lu X.-H., and Bradley R. J. (2003a) Cytotoxicity of conventional and atypical antipsychotic drugs in relation to glucose metabolism. Brain Res. 971, 31–39.PubMedCrossRefGoogle Scholar
  19. Dwyer D. S., Lu X.-H., and Freeman A. M. (2003b) Neuronal glucose metabolism and schizophrenia: therapeutic prospects? Expert Rev. Neurother. 3, 29–40.CrossRefPubMedGoogle Scholar
  20. Eastwood S. L., Heffernan J., and Harrison P. J. (1997) Chronic haloperidol treatment differentially affects the expression of synaptic and neuronal plasticity-associated genes. Mol. Psychiatry 2, 322–329.PubMedCrossRefGoogle Scholar
  21. Egea J., Espinet C., Soler R. M., Dolcet X., Yuste V. J., Encinas M., et al. (2001) Neuronal survival induced by neurotrophins requires calmodulin. J. Cell Biol. 154, 585–597.PubMedCrossRefGoogle Scholar
  22. Einat H., Manji H. K., Gould T. D., Du J., and Chen G. (2003) Possible involvement of the ERK signaling cascade in bipolar disorder: behavioral leads from the study of mutant mice. Drug News Perspect. 16, 453–463.PubMedCrossRefGoogle Scholar
  23. Emamian E. S., Hall D., Birnbaum M. J., Karayiorgou M., and Gogos J. A. (2004) Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat. Genet. 36, 131–137.PubMedCrossRefGoogle Scholar
  24. Greene L. A. and Tischler A. S. (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. U. S. A. 73, 2424–2428.PubMedCrossRefGoogle Scholar
  25. Gutkind J. S. (2000) Regulation of mitogen-activated protein kinase signaling networks by G protein-coupled receptors. Sci. STKE, RE1.Google Scholar
  26. Hait W. N. and Lee G. L. (1985) Characteristics of the cytotoxic effects of the phenothiazine class of calmodulin antagonists. Biochem. Pharmacol. 34, 3973–3978.PubMedCrossRefGoogle Scholar
  27. Halim N. D., Weickert C. S., McClintock B. W., Weinberger D. R., and Lipska B. K. (2004) Effects of chronic haloperidol and clozapine treatment on neurogenesis in the adult rat hippocampus. Neuropsychopharmacology 29, 1063–1069.PubMedCrossRefGoogle Scholar
  28. Hall D. A. and Strange P. G. (1997) Evidence that antipsychotic drugs are inverse agonists at D2 dopamine receptors. Br. J. Pharmacol. 121, 731–736.PubMedCrossRefGoogle Scholar
  29. Harrison P. J. (1999) The neuropathological effects of antipsychotic drugs. Schizophr. Res. 40, 87–99.PubMedCrossRefGoogle Scholar
  30. He J., Xu H., Yang Y., Zhang X., and Li X.-M. (2004) Neuroprotective effects of olanzapine on methamphetamine-induced neurotoxicity are associated with an inhibition of hyperthermia and prevention of Bcl-2 decrease in rats. Brain Res. 1018, 186–192.PubMedCrossRefGoogle Scholar
  31. Herrick-Davis K., Grinde E., and Teitler M. (2000) Inverse agonist activity of atypical antipsychotic drugs at human 5-hydroxytryptamine2C receptors. J. Pharmacol. Exp. Ther. 295, 226–232.PubMedGoogle Scholar
  32. Higuchi M., Onishi K., Masuyama N., and Gotoh Y. (2003) The phosphatidylinositol-3 kinase (PI3K)-Akt pathway suppresses neurite branch formation in NGF-treated PC12 cells. Genes Cells 8, 657–669.PubMedCrossRefGoogle Scholar
  33. Jackson T. R., Blader I. J., Hammonds-Odie L. P., Burga C. R., Cooke F., Hawkins P. T., et al. (1996) Initiation and maintenance of NGF-stimulated neurite outgrowth requires activation of a phosphoinositide 3-kinase. J. Cell Sci. 109, 289–300.PubMedGoogle Scholar
  34. Johnson G. L. and Lapadat R. (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911,1912.PubMedCrossRefGoogle Scholar
  35. Kimura K., Hattori S., Kabuyama Y., Shizawa Y., Takayanagi J., Nakamura S., et al. (1994) Neurite outgrowth of PC12 cells is suppressed by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase. J. Biol. Chem. 269, 18961–18967.PubMedGoogle Scholar
  36. Kobayashi M., Nagata S., Kita Y., Nakatsu N., Ihara S., Kaibuchi K., et al. (1997) Expression of a constitutively active phosphatidylinositol 3-kinase induces process formation in rat PC12 cells. Use of Cre/loxP recombination system. J. Biol. Chem. 272, 16089–16092.PubMedCrossRefGoogle Scholar
  37. Kodman M. and Duman R. S. (2003) Chronic olanzapine and fluoxetine administration increase cell proliferation in hippocampus and prefrontal cortex. Soc. Neurosci. Abstr. Online 849 9.Google Scholar
  38. Konradi C. and Heckers S. (2001) Antipsychotic drugs and neuroplasticity: insights into the treatment and neurobiology of schizophrenia. Biol. Psychiatry 50, 729–742.PubMedCrossRefGoogle Scholar
  39. Kornhuber J., Schultz A., Wiltfang J., Meineke I., Gleiter C. H., Zochling R., et al. (1999) Persistence of haloperidol in human brain tissue. Am. J. Psychiatry 156, 885–890.PubMedGoogle Scholar
  40. Kyosseva S. V. (2004) Mitogen-activated protein Kinase signaling. Int. Rev. Neurobiol. 59, 201–220.PubMedCrossRefGoogle Scholar
  41. Lawlor M. A. and Alessi D. R. (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J. Cell Sci. 114, 2903–2910.PubMedGoogle Scholar
  42. Lidow M. S. (2003) Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res. Brain Res. Rev. 43, 70–84.PubMedCrossRefGoogle Scholar
  43. Lieberman J. A., Tollefson G., Tohen M., Green A. I., Gur R. E., Kahn R., et al. (2003) Comparative efficacy and safety of atypical and conventional antipsychotic drugs in first-episode psychosis: a randomized, double-blind trial of olanzapine versus haloperidol. Am. J. Psychiatry 160, 1396–1404.PubMedCrossRefGoogle Scholar
  44. Lu X.-H., Bradley R. J., and Dwyer D. S. (2003) Neurotrophic effects of olanzapine via Akt/PKB, ERK1/2 pathways. Soc. Neurosci. Abstr. Online 956.12.Google Scholar
  45. Lu X.-H., Bradley R. J., and Dwyer D. S. (2004) Olanzapine produces trophic effects in vitro and stimulates phosphorylation of Akt/PKB, ERK1/2, and the mitogen-activated protein kinase p38. Brain Res. 1011, 58–68.PubMedCrossRefGoogle Scholar
  46. McGurk S. R., Lee M. A., Jayathilake K., and Meltzer H. Y. (2004) Cognitive effects of olanzapine treatment in schizophrenia. Med. Gen. Med. 6, 27.Google Scholar
  47. Meltzer H. Y. (2004) What’s atypical about atypical antipsychotic drugs? Curr. Opin. Pharmacol. 4, 53–57.PubMedCrossRefGoogle Scholar
  48. Olesen O. V. and Linnet K. (1999) Olanzapine serum concentrations in psychiatric patients given standard doses: the influence of comedication. Ther. Drug Monit. 21, 87–90.PubMedCrossRefGoogle Scholar
  49. Pang L., Sawada T., Decker S. J., and Saltiel A. R. (1995) Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. J. Biol. Chem. 270, 13585–13588.PubMedCrossRefGoogle Scholar
  50. Park Y. H., Kantor L., Guptaroy B., Zhang M., Wang K. K., and Gnegy M. E. (2003) Repeated amphetamine treatment induces neurite outgrowth and enhanced amphetamine-stimulated dopamine release in rat pheochromocytoma cells (PC12 cells) via a protein kinase C- and mitogen activated protein kinase-dependent mechanism. J. Neurochem. 87, 1546–1557.PubMedCrossRefGoogle Scholar
  51. Piiper A., Dikic I., Lutz M. P., Leser J., Kronenberger B., Elez R., et al. (2002) Cyclic AMP induces transactivation of the receptors for epidermal growth factor and nerve growth factor, thereby modulating activation of MAP kinase, Akt, and neurite outgrowth in PC12 cells. J. Biol. Chem. 277, 43623–43630.PubMedCrossRefGoogle Scholar
  52. Pozzi L., Hakansson K., Usiello A., Borgkvist A., Lindskog M., Greengard P., and Fisone G. (2003) Opposite regulation by typical and atypical anti-psychotics of ERK1/2, CREB and Elk-1 phosphorylation in mouse dorsal striatum. J. Neurochem. 86, 451–459.PubMedCrossRefGoogle Scholar
  53. Pradines A., Magazin M., Schiltz P., Le Fur G., Caput D., and Ferrara P. (1995) Evidence for nerve growth factor-potentiating activities of the nonpeptidic compound SR 57746A in PC12 cells. J. Neurochem. 64, 1954–1964.PubMedCrossRefGoogle Scholar
  54. Rauser L., Savage J. E., Meltzer H. Y., and Roth B. L. (2001) Inverse agonist actions of typical and atypical antipsychotic drugs at the human 5-hydroxytryptamine(2C) receptor. J. Pharmacol. Exp. Ther. 299, 83–89.PubMedGoogle Scholar
  55. Robertson M. D. and McMullin M. M. (2000) Olanzapine concentrations in clinical serum and postmortem blood specimens—when does therapeutic become toxic? J. Forensic Sci. 45, 418–421.PubMedGoogle Scholar
  56. Ronn L. C., Ralets I., Hartz B. P., Bech M., Berezin A., Berezin V., et al. (2000) A simple procedure for quantification of neurite outgrowth based on stereological principles. J. Neurosci. Methods 100, 25–32.PubMedCrossRefGoogle Scholar
  57. Roux P. P. and Blenis J. (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320–344.PubMedCrossRefGoogle Scholar
  58. Rydel R. E. and Greene L. A. (1987) Acidic and basic fibroblast growth factors promote stable neurite outgrowth and neuronal differentiation in cultures of PC12 cells. J. Neurosci. 7, 3639–3653.PubMedGoogle Scholar
  59. Sanchez S., Jimenez C., Carrera A. C., Diaz-Nido J., Avila J., and Wandosell F. (2004) A cAMP-activated pathway, including PKA and PI3K, regulates neuronal differentiation. Neurochem. Int. 44, 231–242.PubMedCrossRefGoogle Scholar
  60. Satoh T., Furuta K., Tomokiyo K., Namura S., Nakatsuka D., Sugie Y., et al. (2001) Neurotrophic actions of novel compounds designed from cyclopentenone prostaglandins. J. Neurochem. 77, 50–62.PubMedCrossRefGoogle Scholar
  61. Soderling T. R. (1999) The Ca-calmodulin-dependent protein kinase cascade. Trends Biochem. Sci. 24, 232–236.PubMedCrossRefGoogle Scholar
  62. Stahnisch F. W. (2003) Making the brain plastic: early neuroanatomical staining techniques and the pursuit of structural plasticity, 1910–1970. J. Hist. Neurosci. 12, 413–435.PubMedCrossRefGoogle Scholar
  63. Sweatt J. D. and Weeber E. J. (2003) Genetics of childhood disorders: LII. Learning and memory, part 5: human cognitive disorders and the ras/ERK/CREB pathway. J. Am. Acad. Child Adolesc. Psychiatry 42, 873–876.PubMedCrossRefGoogle Scholar
  64. Vaudry D., Stork P. J., Lazarovici P., and Eiden L. E. (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296, 1648–1649.PubMedCrossRefGoogle Scholar
  65. Wakade C. G., Mahadik S. P., Waller J. L., and Chiu F. C. (2002) Atypical neuroleptics stimulate neurogenesis in adult rat brain. J. Neurosci. Res. 69, 72–79.PubMedCrossRefGoogle Scholar
  66. Wang H. D., Dunnavant F. D., Jarman T., and Deutch A. Y. (2004) Effects of antipsychotic drugs on neurogenesis in the forebrain of the adult rat. Neuropsychopharmacology 29, 1230–1238.PubMedCrossRefGoogle Scholar
  67. Weiss B., Prozialeck W. C., and Wallace T. L. (1982) Interaction of drugs with calmodulin. Biochemical, pharmacological and clinical implications. Biochem. Pharmacol. 31, 2217–2226.PubMedCrossRefGoogle Scholar
  68. Whiteman E. L., Cho H., and Birnbaum M. J. (2002) Role of Akt/protein kinase B in metabolism. Trends Endocrinol. Metab. 13, 444–451.PubMedCrossRefGoogle Scholar
  69. Wilson J., Lin H., Fu D., Javitch J. A., and Strange P. G. (2001) Mechanisms of inverse agonism of antipsychotic drugs at the D(2) dopamine receptor: use of a mutant D(2) dopamine receptor that adopts the activated conformation. J. Neurochem. 77, 493–504.PubMedCrossRefGoogle Scholar
  70. Yang B. H., Son H., Kim S. H., Nam J. H., Choi J. H., and Lee J. S. (2004) Phosphorylation of ERK and CREB in cultured hippocampal neurons after haloperidol and risperidone administration. Psychiatry Clin. Neurosci. 58, 262–267.PubMedCrossRefGoogle Scholar
  71. Yang C., Watson R. T., Elmendorf J. S., Sacks D. B., and Pessin J. E. (2000) Calmodulin antagonists inhibit insulin-stimulated GLUT4 (glucose transporter 4) translocation by preventing the formation of phosphatidylinositol 3,4,5-trisphosphate in 3T3L1 adipocytes. Mol. Endocrinol. 14, 317–326.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.Department of PharmacologyLouisiana State University Health Sciences CenterShreveport
  2. 2.Department of PsychiatryLouisiana State University Health Sciences CenterShreveport

Personalised recommendations