Journal of Molecular Neuroscience

, Volume 26, Issue 1, pp 17–26 | Cite as

Axotomy-induced early down-regulation of POU-IV class transcription factors Brn-3a and Brn-3b in retinal ganglion cells

  • Jochen H. Weishaupt
  • Nikolaj Klöcker
  • Mathias Bähr
Original Article


It has been proposed that neurons being exposed to proapoptotic stimuli undergo dedifferentiation, a process that can either allow for regeneration and axon regrowth or, if remaining incomplete, can force the cell to activate apoptotic pathways. A pivotal step in the differentiation program from neuronal precursor cells to differentiated, postmitotic neurons is their exit from the cell cycle. The POU domain transcription factors Brn-3b and Brn-3a, which are expressed in retinal ganglion cells (RGCs) directly after the exit of RGC precursors from the cell cycle, can be employed as RGC-specific differentiation markers to study potential dedifferentiation of RGCs after axotomy. Here, we examined mRNA and protein expression of Brn-3a and-3b in rat RGCs following axonal lesion. We observed a rapid down-regulation of Brn-3a and -3b protein expression in axotomized RGCs, clearly preceding apoptosis of RGCs. Using real-time PCR, we show that regulation of Brn-3 expression occurred at the transcriptional level. The small subset of RGCs regenerating into a peripheral nerve graft did not (re-)express Brn-3a or -b. In conclusion, we found further evidence supporting the hypothesis of a dedifferentiation process in severed mature neurons. As Brn-3b expression has been shown to be a prerequisite for developmental survival of most RGCs and Brn-3a activates transcription of anti-apoptotic genes, down-regulation of Brn-3 transcription factors might be causally involved in the secondary death of adult RGCs following axotomy.

Index Entries

RGCs axotomy optic nerve transection Brn-3 neuronal apoptosis transcription factors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bray G. M., Villegas-Perez M. P., Vidal-Sanz M., and Aguayo A. J. (1987) The use of peripheral nerve grafts to enhance neuronal survival, promote growth and permit terminal reconnections in the central nervous system of adult rats. J. Exp. Biol. 132, 5–19.PubMedGoogle Scholar
  2. Erkman L., McEvilly R. J., Luo L., Ryan A. K., Hooshmand F., O’Connell S. M., et al. (1996) Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381, 603–606.PubMedCrossRefGoogle Scholar
  3. Erkman L., Yates P. A., McLaughlin T., McEvilly R. J., Whisenhunt T., O’Connell S. M., et al. (2000) A POU domain transcription factor-dependent program regulates axon pathfinding in the vertebrate visual system. Neuron 28, 779–792.PubMedCrossRefGoogle Scholar
  4. Fedtsova N. G. and Turner E. E. (1995) Brn-3.0 expression identifies early post-mitotic CNS neurons and sensory neural precursors. Mech. Dev. 53, 291–304.PubMedCrossRefGoogle Scholar
  5. Freeman R. S., Estus S., and Johnson E. M. Jr. (1994) Analysis of cell cycle-related gene expression in postmitotic neurons: selective induction of Cyclin D1 during programmed cell death. Neuron 12, 343–355.PubMedCrossRefGoogle Scholar
  6. Gan L., Xiang M., Zhou L., Wagner D. S., Klein W. H., and Nathans J. (1996) POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc. Natl. Acad. Sci. U. S. A. 93, 3920–3925.PubMedCrossRefGoogle Scholar
  7. Heintz N. (1993) Cell death and the cell cycle: a relationship between transformation and neurodegeneration? Trends Biochem. Sci. 18, 157–159.PubMedCrossRefGoogle Scholar
  8. Hudson C. D., Podesta J., Henderson D., Latchman D. S., and Budhram-Mahadeo V. (2004) Coexpression of Brn-3a POU protein with p53 in a population of neuronal progenitor cells is associated with differentiation and protection against apoptosis. J. Neurosci. Res. 18, 803–814.CrossRefGoogle Scholar
  9. Hull M. and Bähr M. (1994) Differential regulation of c-JUN expression in rat retinal ganglion cells after proximal and distal optic nerve transection. Neurosci. Lett. 178, 39–42.PubMedCrossRefGoogle Scholar
  10. Isenmann S. and Bähr M. (1997) Expression of c-Jun protein in degenerating retinal ganglion cells after optic nerve lesion in the rat. Exp. Neurol. 147, 28–36.PubMedCrossRefGoogle Scholar
  11. Isenmann S., Wahl C., Krajewski S., Reed J. C., and Bähr M. (1997) Up-regulation of Bax protein in degenerating retinal ganglion cells precedes apoptotic cell death after optic nerve lesion in the rat. Eur. J. Neurosci. 9, 1763–1772.PubMedCrossRefGoogle Scholar
  12. Kermer P., Klöcker N., Weishaupt J. H., and Bähr M. (2001) Transection of the optic nerve in rats: studying neuronal death and survival in vivo. Brain Res. Brain Res. Protocols 7, 255–260.CrossRefGoogle Scholar
  13. Klöcker N., Braunling F., Isenmann S., and Bähr M. (1997) In vivo neurotrophic effects of GDNF on axotomized retinal ganglion cells. Neuroreport 8, 3439–3442.PubMedCrossRefGoogle Scholar
  14. Klöcker N., Jung M., Stuermer C. A., and Bähr M. (2001) BDNF increases the number of axotomized rat retinal ganglion cells expressing GAP-43, L1, and TAG-1 mRNA—a supportive role for nitric oxide? Neurobiol. Dis. 8, 103–113.PubMedCrossRefGoogle Scholar
  15. Latchman D. S. (1999) POU family transcription factors in the nervous system. J. Cell. Physiol. 179, 126–133.PubMedCrossRefGoogle Scholar
  16. Lee E. Y., Hu N., Yuan S. S., Cox L. A., Bradley A., Lee W. H., and Herrup K. (1994) Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes Dev. 8, 2008–2021.PubMedCrossRefGoogle Scholar
  17. Lefevre K., Clarke P. G., Danthe E. E., and Castagne V. (2002) Involvement of cyclin-dependent kinases in axotomy-induced retinal ganglion cell death. J. Comp. Neurol. 447, 72–81.PubMedCrossRefGoogle Scholar
  18. Liu Y. Z., Dawson S. J., and Latchman D. S. (1996) Alternative splicing of the Brn-3a and Brn-3b transcription factor RNAs is regulated in neuronal cells. J. Mol. Neurosci. 7, 77–85.PubMedCrossRefGoogle Scholar
  19. McEvilly R. J., Erkman L., Luo L., Sawchenko P. E., Ryan A. F., and Rosenfeld M. G. (1996) Requirement for Brn-3.0 in differentiation and survival of sensory and motor neurons. Nature 384, 574–577.PubMedCrossRefGoogle Scholar
  20. O’Hare M. J., Hou S. T., Morris E. J., Cregan S. P., Xu Q., Slack R. S., and Park D. S. (2000) Induction and modulation of cerebellar granule neuron death by E2F-1. J. Biol. Chem. 275, 25358–25364.PubMedCrossRefGoogle Scholar
  21. Osuga H., Osuga S., Wang F., Fetni R., Hogan M. J., Slack R. S., et al. (2000) Cyclin-dependent kinases as a therapeutic target for stroke. Proc. Natl. Acad. Sci. U. S. A. 97, 10254–10259.PubMedCrossRefGoogle Scholar
  22. Park D. S., Levine B., Ferrari G., and Greene L. A. (1997a) Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J. Neurosci. 17, 8975–8983.PubMedGoogle Scholar
  23. Park D. S., Morris E. J., Greene L. A., and Geller H. M. (1997b) G1/S cell cycle blockers and inhibitors of cyclin-dependent kinases suppress camptothecin-induced neuronal apoptosis. J. Neurosci. 17, 1256–1270.PubMedGoogle Scholar
  24. Peinado-Ramon P., Salvador M., Villegas-Perez M. P., and Vidal-Sanz M. (1996) Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Invest. Ophthalmol. Vis. Sci. 37, 489–500.PubMedGoogle Scholar
  25. Rubin L. L., Gatchalian C. L., Rimon G., and Brooks S. F. (1994) The molecular mechanisms of neuronal apoptosis. Curr. Opin. Neurobiol. 4, 696–702.PubMedCrossRefGoogle Scholar
  26. Smith M. D., Dawson S. J., and Latchman D. S. (1997a) The Brn-3a transcription factor induces neuronal process outgrowth and the coordinate expression of genes encoding synaptic proteins. Mol. Cell. Biol. 17, 345–354.PubMedGoogle Scholar
  27. Smith M. D., Ensor E. A., Coffin R. S., Boxer L. M., and Latchman D. S. (1998) Bcl-2 transcription from the proximal P2 promoter is activated in neuronal cells by the Brn-3a POU family transcription factor. J. Biol. Chem. 273, 16715–16722.PubMedCrossRefGoogle Scholar
  28. Smith M. D., Melton L. A., Ensor E. A., Packham G., Anderson P., Kinloch R. A., and Latchman D. S. (2001) Brn-3a activates the expression of Bcl-x(L) and promotes neuronal survival in vivo as well as in vitro. Mol. Cell. Neurosci. 17, 460–470.PubMedCrossRefGoogle Scholar
  29. Smith M. D., Morris P. J., Dawson S. J., Schwartz M. L., Schlaepfer W. W., and Latchman D. S. (1997b) Coordinate induction of the three neurofilament genes by the Brn-3a transcription factor. J. Biol. Chem. 272, 21325–21333.PubMedCrossRefGoogle Scholar
  30. Vidal-Sanz M., Villegas-Perez M. P., Bray G. M., and Aguayo A. J. (1988) Persistent retrograde labeling of adult rat retinal ganglion cells with the carbocyanine dye dil. Exp. Neurol. 102, 92–101.PubMedCrossRefGoogle Scholar
  31. Villegas-Perez M. P., Vidal-Sanz M., Bray G. M., and Aguayo A. J. (1988) Influences of peripheral nerve grafts on the survival and regrowth of axotomized retinal ganglion cells in adult rats. J. Neurosci. 8, 265–280.PubMedGoogle Scholar
  32. Xiang M. (1998) Requirement for Brn-3b in early differentiation of postmitotic retinal ganglion cell precursors. Dev. Biol. 197, 155–169.PubMedCrossRefGoogle Scholar
  33. Xiang M., Gan L., Li D., Chen Z. Y., Zhou L., O’Malley B. W. Jr., Klein W., and Nathans J. (1997a) Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc. Natl. Acad. Sci. U. S. A. 94, 9445–9450.PubMedCrossRefGoogle Scholar
  34. Xiang M., Gan L., Li D., Zhou L., Chen Z. Y., Wagner D., et al. (1997b) Role of the Brn-3 family of POU-domain genes in the development of the auditory/vestibular, somatosensory, and visual systems. Cold Spring Harb. Symp. Quant. Biol. 62, 325–336.PubMedGoogle Scholar
  35. Xiang M., Gan L., Zhou L., Klein W. H., and Nathans J. (1996) Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling. Proc. Natl. Acad. Sci. U. S. A. 93, 11950–11955.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Jochen H. Weishaupt
    • 1
  • Nikolaj Klöcker
    • 2
  • Mathias Bähr
    • 1
  1. 1.Department of NeurologyUniversity of GöttingenGöttingenGermany
  2. 2.Department of PhysiologyUniversity of FreiburgFreiburgGermany

Personalised recommendations