Journal of Molecular Neuroscience

, Volume 24, Issue 2, pp 247–255 | Cite as

A novel imaging probe for in vivo detection of neuritic and diffuse amyloid plaques in the brain

  • Nobuyuki Okamura
  • Takahiro Suemoto
  • Tsuyoshi Shiomitsu
  • Masako Suzuki
  • Hiroshi Shimadzu
  • Hiroyasu Akatsu
  • Takayuki Yamamoto
  • Hiroyuki Arai
  • Hidetada Sasaki
  • Kazuhiko Yanai
  • Matthias Staufenbiel
  • Yukitsuka Kudo
  • Tohru Sawada
Original Article

Abstract

Extensive deposition of neuritic and diffuse amyloid plaques in the brain is a critical event for the pathogenesis of Alzheimer’s disease (AD) and considered to start before the appearance of clinical symptoms. In vivo detection of these brain β-amyloid (Aβ) deposits using positron emission tomography (PET), therefore, would be a useful marker for presymptomatic detection of AD. To develop a new agent for PET probe of imaging neuritic and diffuse amyloid deposits, novel fluorescent compounds, including styryl-fluorobenzoxazole derivatives, were examined. These compounds showed a high binding affinity for both synthetic Aβ1-40 and Aβ1-42 aggregates. Some of these compounds also displayed distinct staining of neuritic and diffuse amyloid plaques in AD brain sections. A biodistribution study of styryl-fluorobenzoxazole derivatives in normal mice exhibited excellent brain uptakes (4.5–5.5% injected dose/g at 2 min postinjection). Furthermore, iv administration of BF-145, a styryl-fluorobenzoxazole derivative, demonstrated specific in vivo labeling of compact and diffuse amyloid deposits in an APP23 transgenic mouse brain, in contrast to no accumulation in a wild-type mouse brain. These findings suggest that BF-145 is a potential candidate as a probe for imaging early brain pathology in AD patients.

Index Entries

Amyloid-β protein senile plaques neurofibrillary tangles imaging Alzheimer’s disease positron emission tomography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agdeppa E. D., Kepe V., Liu J., Flores-Torres S., Satyamurthy N., Petric A., et al. (2001) Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer’s disease. J. Neurosci. 21, RC189.Google Scholar
  2. Bacskai B. J., Kajdasz S. T., Christie R. H., Carter C., Games D., Seubert P., et al. (2001) Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat. Med. 7, 369–372.PubMedCrossRefGoogle Scholar
  3. Bacskai B. J., Klunk W. E., Mathis C. A., and Hyman B. T. (2002) Imaging amyloid-β deposits in vivo. J. Cereb. Blood Flow Metab. 22, 1035–1041.PubMedCrossRefGoogle Scholar
  4. Cheng Y. and Prusoff W. H. (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (150) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108.PubMedCrossRefGoogle Scholar
  5. Crystal A. S., Giasson B. I., Crowe A., Kung M. P., Zhuang Z. P., and Trojanowski J. Q. (2003) A comparison of amyloid fibrillogenesis using the novel fluorescent compound K114. J. Neurochem. 86, 1359–1368.PubMedCrossRefGoogle Scholar
  6. Du Y., Wei X., Dodel R., Sommer N., Hampel H., Gao F., et al. (2003) Human anti-β-amyloid antibodies block β-amyloid fibril formation and prevent β-amyloid-induced neurotoxicity. Brain 126, 1935–1939.PubMedCrossRefGoogle Scholar
  7. Engler H., Blomqvist G., Bergstrom M., Langstrom B., Klunk W., Debnath M., et al. (2002) First human study with a benzothiazole amyloid-imaging agent in Alzheimer’s disease and control subjects. Neurobiol. Aging 23, S1568.Google Scholar
  8. Hardy J. and Selkoe D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356.PubMedCrossRefGoogle Scholar
  9. Helmuth L. (2002) New Alzheimer’s treatments that may ease the mind. Science 297, 1260–1262.PubMedCrossRefGoogle Scholar
  10. Kitamoto T., Ogomori K., Tateishi J., and Prusiner S. B. (1987) Formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab. Invest. 57, 230–236.PubMedGoogle Scholar
  11. Klunk W. E., Bacskai B. J., Mathis C. A., Kajdasz S. T., McLellan M. E., Frosch M. P., et al. (2002) Imaging Abeta plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J. Neuropathol. Exp. Neurol. 61, 797–805.PubMedGoogle Scholar
  12. Klunk W. E., Wang Y., Huang G. F., Debnath M. L., Holt D. P., Shao L., et al. (2003) The binding of 2-(4′-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J. Neurosci. 23, 2086–2092.PubMedGoogle Scholar
  13. Kung H. F., Kung M. P., Zhuang Z. P., Hou C., Lee C. W. Plossl K., et al. (2003) Iodinated tracers for imaging amyloid plaques in the brain. Mol. Imaging Biol. 5, 418–426.PubMedCrossRefGoogle Scholar
  14. Kung M. P., Hou C., Zhuang Z. P., Zhang B., Skovronsky D., Trojanowski J. Q., et al. (2002) IMPY: an improved thioflavin-T derivative for in vivo labeling of beta-amyloid plaques. Brain Res. 956, 202–210.PubMedCrossRefGoogle Scholar
  15. Kung M. P., Skovronsky D. M., Hou C., Zhuang Z.P., Gur T. L., Zhang B., et al. (2003a) Detection of amyloid plaques by radioligands for Abeta40 and Abeta42: potential imaging agents in Alzheimer’s patients. J. Mol. Neurosci. 20, 15–24.PubMedCrossRefGoogle Scholar
  16. Kung M. P., Zhuang Z. P., Hou C., Jin L. W., and Kung H. F. (2003b) Characterization of radioiodinated ligand binding to amyloid beta plaques. J. Mol. Neurosci. 20, 249–254.PubMedCrossRefGoogle Scholar
  17. Lee C. W., Kung M. P., Hou C., and Kung H. F. (2003) Dimethylamino-fluorenes: ligands for detecting beta-amyloid plaques in the brain. Nucl. Med. Biol. 30, 573–580.PubMedCrossRefGoogle Scholar
  18. Mathis C. A., Bacskai B. J., Kajdasz S. T., McLellan M. E., Frosch M. P., Hyman B. T., et al. (2002) A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg. Med. Chem. Lett. 12, 295–298.PubMedCrossRefGoogle Scholar
  19. Morris J. C., Storandt M., McKeel D. W., Jr., Rubin E. H., Price J. L., Grant E. A., et al. (1996) Cerebral amyloid deposition and diffuse plaques in “normal” aging: Evidence for presymptomatic and very mild Alzheimer’s disease. Neurology 46, 707–719.PubMedGoogle Scholar
  20. Ono M., Wilson A., Nobrega J., Westaway D., Verhoeff P., Zhuang Z. P., et al. (2003) 11C-Labeled stilbene derivatives as Aβ-aggregate-specific PET imaging agents for Alzheimer’s disease. Nucl. Med. Biol. 30, 565–571.PubMedCrossRefGoogle Scholar
  21. Price J. L. and Morris J. C. (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann. Neurol. 45, 358–368.PubMedCrossRefGoogle Scholar
  22. Selkoe D. J. (2000) Imaging Alzheimer’s amyloid. Nat. Biotechnol. 18, 823, 824.PubMedCrossRefGoogle Scholar
  23. Shoghi-Jadid K., Small G. W., Agdeppa E. D., Kepe V., Ercoli L. M., Siddarth P., et al. (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am. J. Geriatr. Psychiatry 10, 24–35.PubMedCrossRefGoogle Scholar
  24. Skovronsky D. M., Zhang B., Kung M. P., Kung H. F., Trojanowski J. Q., and Lee V. M. (2000) In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 97, 7609–7614.PubMedCrossRefGoogle Scholar
  25. Small G. W., Agdeppa E. D., Kepe V., Satyamurthy N., Huang S.-C., and Barrio J. R. (2002) In vivo brain imaging of tangle burden in humans. J. Mol. Neurosci. 19, 323–327.PubMedGoogle Scholar
  26. Sturchler-Pierrat C., Abramowski D., Duke M., Wiederhold K. H., Mistl C., Rothacher S., et al. (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. U. S. A. 94, 13287–13292.PubMedCrossRefGoogle Scholar
  27. Suemoto T., Okamura N., Shiomitsu T., Suzuki M., Shimadzu H., Akatsu H., et al. (2004) In vivo amyloid-β labeling in a model mouse with BF-108. Neurosci. Res. 48, 65–74.PubMedCrossRefGoogle Scholar
  28. Trojanowski J. Q. (2002) Emerging Alzheimer’s disease therapies: focusing on the future. Neurobiol. Aging 23, 85–990.CrossRefGoogle Scholar
  29. Vickers J. C., Dickson T. C., Adlard P. A., Saunders H. L., King C. E., and McCormack G. (2000) The cause of neuronal degeneration in Alzheimer’s disease. Prog. Neurobiol. 60, 139–165.PubMedCrossRefGoogle Scholar
  30. Wu C. W., Liao P. C., Lin C., Kuo C. J., Chen S. T., Chen H. I., et al. (2003) Brain region-dependent increases in beta-amyloid and apolipoprotein E levels in hypercholesterolemic rabbits. J. Neural. Transm. 110, 641–649.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Nobuyuki Okamura
    • 1
    • 2
  • Takahiro Suemoto
    • 1
  • Tsuyoshi Shiomitsu
    • 1
  • Masako Suzuki
    • 1
  • Hiroshi Shimadzu
    • 1
  • Hiroyasu Akatsu
    • 4
  • Takayuki Yamamoto
    • 4
  • Hiroyuki Arai
    • 3
  • Hidetada Sasaki
    • 3
  • Kazuhiko Yanai
    • 2
  • Matthias Staufenbiel
    • 5
  • Yukitsuka Kudo
    • 1
  • Tohru Sawada
    • 1
  1. 1.BF Research Institutec/o National Cardiovascular CenterOsakaJapan
  2. 2.Department of PharmacologyTohoku University School of MedicineSendaiJapan
  3. 3.Department of Geriatric and Respiratory MedicineTohoku University School of MedicineSendaiJapan
  4. 4.Choju Medical InstituteFukushimura HospitalToyohashi, AichiJapan
  5. 5.Nervous System DepartmentNovartis Institutes for Biomedical ResearchBaselSwitzerland

Personalised recommendations