Journal of Molecular Neuroscience

, Volume 24, Issue 1, pp 97–104 | Cite as

Cholesterol, copper, and accumulation of thioflavine S-reactive Alzheimer’s-like amyloid β in rabbit brain

Lipid-Lowering Therapies

Abstract

Accumulation of β-amyloid (Aβ) in the Alzheimer’s disease (AD) brain is considered to be causally related to the behavioral symptoms of the disorder. Transgenic mouse models of AD exhibit accumulation of Aβ in the brain and simultaneous memory deficits, and Aβ accumulation is enhanced if dietary cholesterol is administered. Likewise, dietary cholesterol induces neuronal accumulation of Aβ in New Zealand white rabbits. The cholesterol-induced accumulation of Aβ in rabbit brain is increased when distilled drinking water is supplemented with 0.12 ppm copper ion (as copper sulfate) compared to the cholesterol-induced accumulation of Aβ in rabbit brain of animals given unaltered distilled water. The numbers of affected neurons and the intensity of neuronal Aβ immunoreactivity is consistently increased among animals administered the copper ion in their drinking water. A copper-induced decrease in the clearance of overproduced Aβ from the brain is proposed as the mechanism causing Aβ accumulation and resulting in the observed memory deficits. Current studies reveal that intensely immunoreactive neurons, extracellular deposits of Aβ, and brain vessels in cholesterol-fed rabbits given copper-supplemented water were stained by thioflavine S. Thioflavine S-reactive features were not observed in cholesterol-fed rabbits given unaltered distilled drinking water. The data suggest that there is an accumulation of fibrillar Aβ induced in the brains of rabbits fed a cholesterol diet and administered trace levels of copper ion in their drinking water.

Index Entries

Alzheimer’s pathology cholesterol copper water quality amyloid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atwood C. S., Scarpa R. C., Huang X., Moiré R. D., Jones W. D., Fairly D. P., et al. (2000) Characterization of copper interactions with Alzheimer amyloid beta peptides: Identification of an attomolar-affinity copper binding site on amyloid beta1-42. J. Neurochem. 75, 1219–1233.PubMedCrossRefGoogle Scholar
  2. Austen B. M., Frears E. R., and Davies H. (2000) Cholesterol upregulates production of Abeta 1–40 and 1–42 in transfected cells. Neurobiol. Aging 21, S254.Google Scholar
  3. Austen B. M., Sidera C., Liu C., and Frears E. (2003) The role of intracellular cholesterol on the processing of the B-amyloid precursor protein. J. Nutr. Health Aging 7, 31–36.PubMedGoogle Scholar
  4. Bales K. R., Fishman C., DeLong C., Du Y., Jordan W., and Paul S. M. (2000) Diet-induced hyperlipidemia accelerates amyloid deposition in the APPv717f transgenic mouse model of Alzheimer’s disease. Neurobiol. Aging 21, S139.Google Scholar
  5. Bergmann C., Runz H., Jakala P., and Hartmann T. (2000) Diversification of gamma-secretase versus beta-secretase inhibition by cholesterol depletion. Neurobiol. Aging 21, S278.Google Scholar
  6. Beyreuther K. (2000) Physiological function of APP processing. Neurobiol. Aging 21, S69.Google Scholar
  7. Bush A. I., Multhaup G., Moir R. D., Williamson T. G., Small D. H., Rumble B., et al. (1993) A novel zinc (II) binding site modulates the function of the beta A4 amyloid protein precursor of Alzheimer’s disease. J. Biol. Chem. 268, 16109–16112.PubMedGoogle Scholar
  8. Bush A. I., Pettingell W. H., Jr., Paradis M. D., and Tanzi R. E. (1994) Modulation of A beta adhesiveness and secretase site cleavage by zinc. J. Biol. Chem. 269, 12152–12158.PubMedGoogle Scholar
  9. Chen M., Durr J., and Fernandez H. L. (2000) Possible role of calpain in normal processing of beta-amyloid precursor protein in human platelets. Biochem. Biophys. Res. Commun. 273, 170–175.PubMedCrossRefGoogle Scholar
  10. Cherny R. A., Atwood C. S., Xilinas M. E., Gray D. N., Jones W. D., McLean C. A., et al. (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30, 665–676.PubMedCrossRefGoogle Scholar
  11. Cornett C. R., Markesbery W. R., and Ehmann W. D. (1998) Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. Neurotoxicology 19, 339–345.PubMedGoogle Scholar
  12. Cuajungco M. P., Goldstein L. E., Nunomura A., Smith M. A., Lim J. T., Atwood C. S., et al. (2000) Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of abeta by zinc. J. Biol. Chem. 275, 19439–19442.PubMedCrossRefGoogle Scholar
  13. DeMattos R. B., Bales K. R., Cummins D. J., Dodart J. C., Paul S. M., and Holtzman D. M. (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 98, 8850–8855.PubMedCrossRefGoogle Scholar
  14. DeMattos R. B., Bales K. R., Cummins D. J., Paul S. M., and Holtzman D. M. (2002a) Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 295, 2264–2267.PubMedCrossRefGoogle Scholar
  15. DeMattos R. B., Bales K. R., Parsadanian M., O’Dell M. A., Foss E. M., Paul S. M., and Holtzman D. M. (2002b) Plaque-associated disruption of CSF and plasma amyloid-beta (Abeta) equilibrium in a mouse model of Alzheimer’s disease. J. Neurochem. 81, 229–236.PubMedCrossRefGoogle Scholar
  16. Durham R. A., Parker C. A., Emmerling M. R., Bisgaier C. L., and Walker L. C. (1998) Effect of age and diet on the expression of beta-amyloid 1–40 and 1–42 in the brains of apolipoprotein-E-deficient mice. Neurobiol. Aging 19, S281.Google Scholar
  17. Fassbender K., Simons M., Bergmann C., Stroick M., Jutojohann D., Keller P., et al. (2001) Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc. Natl. Acad. Sci. U. S. A. 98, 5371–5373.CrossRefGoogle Scholar
  18. Finefrock A. E., Bush A. I., and Doraiswarny P. M. (2003) Current status of metals as therapeutic targets in Alzheimer’s disease. J. Am. Geriatr. Soc. 51, 1143–1148.PubMedCrossRefGoogle Scholar
  19. Frears E. R., Stephens D. J., Walters C. E., Davies H., and Austen B. M. (1999) The role of cholesterol in the biosynthesis of β-amyloid. NeuroReport 10, 1699–1705.PubMedCrossRefGoogle Scholar
  20. Fung Y. K., Meade A. G., Rack E. P., Blotcky A. J., Claassen J. P., Beatty M. W., and Durham T. (1996) Mercury determination in nursing home patients with Alzheimer’s disease. Gen. Dent. 44, 74–78.PubMedGoogle Scholar
  21. Galbete J. L., Martin T. R., Peressini E., Modena P., Bianchi R., and Forloni G. (2000) Cholesterol decreases secretion of the secreted form of amyloid precursor protein by interfering with glycosylation in the protein secretory pathway. Biochem. J. 348, 307–313.PubMedCrossRefGoogle Scholar
  22. Huang X., Cuajungco M. P., Atwood C. S., Moir R. D., Tanzi R. E., and Bush A. I. (2000) Alzheimer’s disease, beta-amyloid protein and zinc. J. Nutr. 130, 1488S-1492S.PubMedGoogle Scholar
  23. Li L., Zeigler S., Lindsey R. J., and Fukuchi K. (1999) Effects of an atherogenic diet on amyloidosis in transgenic mice overexpressing the C-terminal portion of b-amyloid precurson protein. Soc. Neurosci. 25, 1859.Google Scholar
  24. Moir R. D., Atwood C. S., Romano D. M., Laurans M. H., Huang X., Bush A. I., et al. (1999) Differential effects of apolipoprotein E isoforms on metal-induced aggregation of A beta using physiological concentrations. Biochemistry 38, 4595–4603.PubMedCrossRefGoogle Scholar
  25. Molina J. A., Jimenez-Jimenez F. J., Aguilar M. V., Mesenguer I., Mateos-Vega C. J., Conzalez-Munoz M. J., et al. (1998) Cerebrospinal fluid levels of transition metals in patients with Alzheimer’s disease. J. Neural Transm. 105, 479–488.PubMedCrossRefGoogle Scholar
  26. Racchi M., Baetta R., Salvietti N., Ianna P., Franceschini G., Paoletti R., et al. (1997) Secretory processing of amyloid precursor protein is inhibited by increase in cellular cholesterol content. Biochem J. 322, 893–898.PubMedGoogle Scholar
  27. Refolo L. M., Pappolla M. A., LaFrancois J., Malester B., Schmidt S. D., Thomas-Bryant T., et al. (2001) A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol. Dis. 5, 890–899.CrossRefGoogle Scholar
  28. Refolo L. M., Pappolla M. A., Malester B., LaFrancois J., Bryant-Thomas Wang R., et al. (2000) Hypercholesterolemia accelerates Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7, 321–331.PubMedCrossRefGoogle Scholar
  29. Regland B., Lehmann W., Abedini I., Blennow K., Jonsson M., Karlsson I., et al. (2001) Treatment of Alzheimer’s disease with Clioquinol. Dement. Geriatr. Cogn. Disord. 12, 408–414.PubMedCrossRefGoogle Scholar
  30. Robinson S. R. and Bishop G. M. (2002) Ab as a bioflocculant: Implications for the amyloid hypothesis of Alzheimer’s disease. Neurobiol. Aging 23, 1051–1072.PubMedCrossRefGoogle Scholar
  31. Schreurs B. G., Smith-Bell C. A., Lochhead J., and Sparks D. L. (2003) Cholesterol modifies classical conditioning of the rabbit nictitating membrane response. Behav. Neurosci. 117, 1220–1232.PubMedCrossRefGoogle Scholar
  32. Shie F.- G., Jin L.- W., Cook D. G., Leverenz J. B., and LeBoeul R. C. (2002) Diet-induced hypercholesterolemia enhances brain Ab accumulation in transgenic mice. NeuroReport 13, 455–459.PubMedCrossRefGoogle Scholar
  33. Simons M., Keller P., De Strooper B., Beyreuther K., Dotti C. G., and Simons K. (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. U. S. A. 95, 6460–6464.PubMedCrossRefGoogle Scholar
  34. Sparks D. L. (1996) Intraneuronal β-amyloid immuno-reactivity in the CNS. Neurobiol. Aging 17, 291–299.PubMedCrossRefGoogle Scholar
  35. Sparks D. L. (1997) Dietary cholesterol induces Alzheimer-like β-amyloid immunoreactivity in rabbit brain. Nutr. Metab. Cardiovasc. Dis. 7, 255–266.Google Scholar
  36. Sparks D. L. (1999) Neuropathologic links between Alzheimer’s disease and vascular disease, in Alzheimer’s Disease and Related Disorders, Iqbal K., Swaab D. F., Winblad B., Wisniewski H. M., eds., John Wiley, Chichester, West Sussex, England, pp. 153–163.Google Scholar
  37. Sparks D. L. and Schreurs B. G. (2003) Trace amounts of copper in water induce b-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 100, 1065–1069.CrossRefGoogle Scholar
  38. Sparks D. L., Kou Y.-M., Roher A., Martin T. A., and Lukas R. J. (2000) Alterations of Alzheimer’s disease in the cholesterol-fed rabbit, including vascular inflammation. Preliminary observations. Ann. N. Y. Acad. Sci. 903, 335–344.PubMedCrossRefGoogle Scholar
  39. Sparks D. L., Liu H., Gross D. R., and Scheff S. W. (1995) Increased density of cortical Apolipoprotein E immunoreactive neurons in rabbit brain after dietary administration of cholesterol. Neurosci. Lett. 187, 142–144.PubMedCrossRefGoogle Scholar
  40. Sparks D. L., Lochhead J., Horstman D., Wagoner T., and Martin T. (2002) Water quality has a pronounced effect on cholesterol-induced accumulation of Alzheimer amyloid b (Ab) in rabbit brain. J. Alzheimer Dis. 4, 523–529.Google Scholar
  41. Sparks D. L., Scheff S. W., Hunsaker J. C. III, Liu H., Landers T., and Gross D. R. (1994) Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp. Neurol. 126, 88–94.PubMedCrossRefGoogle Scholar
  42. Squitti R., Rossini P. M., Cassetta E., Moffa F., Pasqualetti P., Cortesi M., et al. (2002) D-penicillamine reduces serum oxidative stress in Alzheimer’s disease patients. Eur. J. Clin. Invest. 32, 51–59.PubMedCrossRefGoogle Scholar
  43. Streit W. J. and Sparks D. L. (1997) Activation of microglia in the brains of humans with heart disease and hypercholesterolemic rabbits. J. Mol. Med. 75, 130–138.PubMedCrossRefGoogle Scholar
  44. White A. R., Reyes R., Mercer J. F., Camakaris J., Zheng H., Bush A. I., et al. (1999) Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res. 842, 439–444.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Sun Health Research Institute (SHRI)Sun City

Personalised recommendations