Journal of Molecular Neuroscience

, Volume 23, Issue 1–2, pp 13–22 | Cite as

Amyloid formation of a yeast prion determinant

Review Article


The [PSI +] factor of the yeast Saccharomyces cerevisiae is a cytoplasmic, epigenetic regulator of translation termination and can be transmitted from mother to daughter cells in a non-Mendelian manner. The transmission is caused by self-perpetuating noncovalent changes in the physical state of the protein determinant Sup35p, rather than by changes in its encoding gene. This phenomenon is reminiscent of the protein-only mechanism proposed for the infectious agent in a group of unusual, fatal neurodegenerative diseases in mammals. These diseases, known as prion diseases, are thought to involve a self-perpetuating change in the conformation of the prion protein (PrP) from a soluble form to one reflecting amyloid structure. In contrast to mammalian PrPs, Sup35p[PSI+] is not associated with disease in yeast and is not infectious for humans. Because of the mechanistic similarities of transmission of a specific, nonsoluble protein conformation, the epigenetic inheritance of [PSI +] in yeast was called a yeast prion phenomenon, and the yeast prion hypothesis was born. The elucidation of the mechanism by which alternative protein conformations transmit their structural information is key to understanding how proteins function as elements of epigenetic inheritance and how amyloidogenic conformations can be propagated. Yeast provides an ideal system to analyze both the epigenetic traits in vivo and the phenomenon of amyloid formation in vitro. The combination of these tools will help to determine the general mechanism of prion and amyloid appearance and propagation.

Index Entries

Neurodegenerative disease PrP Sup35p TSE yeast prion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balbirnie M., Grothe R., and Eisenberg, D. S. (2001) An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc. Natl. Acad. Sci. USA 98, 2375–2380.PubMedCrossRefGoogle Scholar
  2. Blake C. and Serpell L. (1996) Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix. Structure 4, 989–998.PubMedCrossRefGoogle Scholar
  3. Carrell R. and Lomas D. (1997) Conformational disease. Lancet 350, 134–138.PubMedCrossRefGoogle Scholar
  4. Chernoff Y. O., Derkatch I. L., and Inge-Vechtomov S. G. (1993) Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr. Genet. 24, 268–270.PubMedCrossRefGoogle Scholar
  5. Chernoff Y. O., Galkin A. P., Lewitin E., Chernova T. A., Newnam G. P., and Belenkiy S. M. (2000) Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol. Microbiol. 35, 865–876.PubMedCrossRefGoogle Scholar
  6. Chiesa R., Piccardo P., Ghetti B., and Harris D. A. (1998) Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron 21, 1339–1351.PubMedCrossRefGoogle Scholar
  7. DePace A. H. and Weissman J. S. (2002) Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. Nat. Struct. Biol. 9, 389–396.PubMedGoogle Scholar
  8. Derkatch I. L., Chernoff Y. O., Kushnirov V. V., Inge-Vechtomov S. G., and Liebman S. W. (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386.PubMedGoogle Scholar
  9. Dobson C. M. (2001) Protein folding and its links with human disease. Biochem. Soc. Symp. 68, 1–26.PubMedGoogle Scholar
  10. Doel S. M., McCready S. J., Nierras C. R., and Cox B. S. (1994) The dominant PNM2-mutation which eliminates the PSI factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137, 659–670.PubMedGoogle Scholar
  11. Eaglestone S. S., Cox B. S., and Tuite M. F. (1999) Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J. 18, 1974–1981.PubMedCrossRefGoogle Scholar
  12. Esler W. P., Felix A. M., Stimson E. R., Lachenmann M. J., Ghilardi J. R., Lu Y. A., et al. (2000) Activation barriers to structural transition determine deposition rates of Alzheimer’s disease a beta amyloid. J. Struct. Biol. 130, 174–183.PubMedCrossRefGoogle Scholar
  13. Frolova L., Le Goff X., Zhouravleva G., Davydova E., Philippe M., and Kisselev L. (1996) Eukaryotic polypeptide chain release factor eRF3 is an eRF1-and ribosome-dependent guanosine triphosphatase. RNA 2, 334–341.PubMedGoogle Scholar
  14. Geddes A. J., Parker K. D., Atkins E. D., and Beighton E. (1968) “Cross-beta” conformation in proteins. J. Mol. Biol. 32, 343–358.PubMedCrossRefGoogle Scholar
  15. Glover J. R., Kowal A. S., Schirmer E. C., Patino M. M., Liu J. J., and Lindquist S. (1997) Self-seeded fibers formed by Sup35p, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819.PubMedCrossRefGoogle Scholar
  16. Griffith J. S. (1967) Self-replication and scrapie. Nature 215, 1043–1044.PubMedCrossRefGoogle Scholar
  17. Hammarstrom P., Wiseman R. L., Powers E. T., and Kelly J. W. (2003) Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 299, 713–716.PubMedCrossRefGoogle Scholar
  18. Harper J. D., Wong S. S., Lieber C. M., and Lansbury P. T. (1997) Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125.PubMedCrossRefGoogle Scholar
  19. Inoue Y., Kishimoto A., Hirao J., Yoshida M., and Taguchi H. (2001) Strong growth polarity of yeast prion fiber revealed by single fiber imaging. J. Biol. Chem. 276, 35227–35230.PubMedCrossRefGoogle Scholar
  20. Jarrett J. T., Berger E. P., and Lansbury P. T. (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32, 4693–4697.PubMedCrossRefGoogle Scholar
  21. Kelly J. W. (1996) Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct. Biol. 6, 11–17.PubMedCrossRefGoogle Scholar
  22. Kelly J. W. (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8, 101–106.PubMedCrossRefGoogle Scholar
  23. King C. Y., Tittmann P., Gross H., Gebert R., Aebi M., and Wuthrich K. (1997) Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloidlike filaments. Proc. Natl. Acad. Sci. USA 94, 6618–6622.PubMedCrossRefGoogle Scholar
  24. Koo E. H., Lansbury P. T., and Kelly J. W. (1999) Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc. Natl. Acad. Sci. USA 96, 9989–9990.PubMedCrossRefGoogle Scholar
  25. Kushnirov V. V., Kryndushkin D. S., Boguta M., Smirnov V. N., and Ter-Avanesyan M. D. (2000) Chaperones that cure yeast artificial [PSI+] and their prion-specific effects. Curr. Biol. 10, 1443–1446.PubMedCrossRefGoogle Scholar
  26. Kushnirov V. V., Ter-Avanesyan M. D., Surguchov A. P., Smirnov V. N., and Inge-Vechtomov S. G. (1987) Localization of possible functional domains in sup2 gene product of the yeast Saccharomyces cerevisiae. FEBS Lett. 215, 257–260.PubMedCrossRefGoogle Scholar
  27. Kushnirov V. V., Ter-Avanesyan M. D., Telckov M. V., Surguchov A. P., Smirnov V. N., and Inge-Vechtomov S. G. (1988) Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene 66, 45–54.PubMedCrossRefGoogle Scholar
  28. Liebman S. W. and Derkatch I. L. (1999) The yeast [PSI+] prion: making sense of nonsense. J. Biol. Chem. 274, 1181–1184.PubMedCrossRefGoogle Scholar
  29. Liu J. J. and Lindquist S. (1999) Oligopeptide-repeat expansions modulate ‘protein-only’ inheritance in yeast. Nature 400, 573–576.PubMedCrossRefGoogle Scholar
  30. Lomakin A., Teplow D. B., Kirschner D. A., and Benedek G. B. (1997) Kinetic theory of fibrillogenesis of amyloid beta-protein. Proc. Natl. Acad. Sci. USA 94, 7942–7947.PubMedCrossRefGoogle Scholar
  31. Masel J. and Jansen V. A. (2000) Designing drugs to stop the formation of prion aggregates and other amyloids. Biophys. Chem. 88, 47–59.PubMedCrossRefGoogle Scholar
  32. Massi F. and Straub J. E. (2001) Energy landscape theory for Alzheimer’s amyloid beta-peptide fibril elongation. Proteins 42, 217–229.PubMedCrossRefGoogle Scholar
  33. Merlini G., Bellotti V., Andreola A., Palladini G., Obici L., Casarini S., and Perfetti V. (2001) Protein aggregation. Clin. Chem. Lab. Med. 39, 1065–1075.PubMedCrossRefGoogle Scholar
  34. Partridge L. and Barton N. H. (2000) Evolving evolvability. Nature 407, 457, 458.PubMedCrossRefGoogle Scholar
  35. Parham S. N., Resende C. G., and Tuite M. F. (2001) Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J. 20, 2111–2119.PubMedCrossRefGoogle Scholar
  36. Patino M. M., Liu J. J., Glover J. R., and Lindquist S. (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626.PubMedCrossRefGoogle Scholar
  37. Paushkin S. V., Kushnirov V. V., Smirnov V. N., and Ter-Avanesyan M. D. (1996) Propagation of the yeast prion-like [PSI+] determinant is mediated by oligomerization of the SUP35P-encoded polypeptide chain release factor. EMBO J. 15, 3127–3134.PubMedGoogle Scholar
  38. Paushkin S. V., Kushnirov V. V., Smirnov V. N., and Ter-Avanesyan M. D. (1997) In vitro propagation of the prion-like state of yeast Sup35 protein. Science 277, 81–383.CrossRefGoogle Scholar
  39. Prusiner S. B. (1982) Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144.PubMedCrossRefGoogle Scholar
  40. Prusiner S. B. (1997) Prion diseases and the BSE crisis. Science 278, 245–251.PubMedCrossRefGoogle Scholar
  41. Prusiner S. B. (1998) Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383.PubMedCrossRefGoogle Scholar
  42. Prusiner S. B. and Scott, M. R. (1997) Genetics of prions. Annu. Rev. Genet. 31, 139–175.PubMedCrossRefGoogle Scholar
  43. Rochet J. C. and Lansbury P. T. (2000) Amyloid fibrillogenesis: themes and variations. Curr. Opin. Struct. Biol. 10, 60–68.PubMedCrossRefGoogle Scholar
  44. Santoso A., Chien P., Osherovich L. Z. and Weissman J. S. (2000) Molecular basis of a yeast prion species barrier. Cell 100, 277–288.PubMedCrossRefGoogle Scholar
  45. Scheibel T. and Lindquist S. (2001) The role of conformational flexibility in amyloid propagation by the yeast prion-protein Sup35. Nat. Struct. Biol. 8, 958–962.PubMedCrossRefGoogle Scholar
  46. Scheibel T., Bloom J., and Lindquist S. (2004) The elongation of yeast prion fibers involves separable steps of association and conversion. Proc. Natl. Acad. Sci. USA 101, 2287–2292.PubMedCrossRefGoogle Scholar
  47. Scheibel T., Kowal A., Bloom J., and Lindquist S. (2001) Bi-directional amyloid fiber growth for a yeast prion determinant. Curr. Biol. 11, 366–369.PubMedCrossRefGoogle Scholar
  48. Serio T. R. and Lindquist S. L. (1999) [PSI+]: an epigenetic modulator of translation termination efficiency. Annu. Rev. Cell Dev. Biol. 15, 661–703.PubMedCrossRefGoogle Scholar
  49. Serio T. R. and Lindquist S. L. (2000) Protein-only inheritance in yeast: something to get [PSI+]-ched about. Trends Cell Biol. 10, 98–105.PubMedCrossRefGoogle Scholar
  50. Serio T. R., Cashikar A. G., Kowal A. S., Sawicki G. J., Moslehi J. J., Serpell L., et al. (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321.PubMedCrossRefGoogle Scholar
  51. Sparrer H. E., Santoso A., Szoka F. C., and Weissman J. S. (2000) Evidence for the prion hypothesis: induction of the yeast [PSI+] factor by in vitro-converted Sup35 protein. Science 289, 595–599.PubMedCrossRefGoogle Scholar
  52. Stansfield I., Jones K. M., Kushnirov V. V., Dagkesamanskaya A. R., Poznyakovski A. I., Paushkin S. V., et al. (1995) The products of the SUP45 (eRF1) and SUP35P genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 14, 4365–4373.PubMedGoogle Scholar
  53. Sunde M. and Blake C. (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. Adv. Protein Chem. 50, 123–159.PubMedCrossRefGoogle Scholar
  54. Ter-Avanesyan M. D., Dagkesamanskaya A. R., Kushnirov V. V., and Smirnov V. N. (1994) The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137, 671–676.PubMedGoogle Scholar
  55. Ter-Avanesyan M. D., Kushnirov V. V., Dagkesamanskaya A. R., Didichenko S. A., Chernoff Y. O., Inge-Vechtomov S. G., and Smirnov V. N. (1993) Deletion analysis of the SUP35P gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol. 7, 683–692.PubMedCrossRefGoogle Scholar
  56. True H. and Lindquist S. (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–485.PubMedCrossRefGoogle Scholar
  57. Weissmann C. (1999) Molecular genetics of transmissible spongiform encephalopathies. J. Biol. Chem. 274, 3–6.PubMedCrossRefGoogle Scholar
  58. Wickner R. B. (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569.PubMedCrossRefGoogle Scholar
  59. Wickner R. B., Taylor K. L., Edskes H. K., Maddelein M. L., Moriyama H., and Roberts B. T (2000) Prions of yeast as heritable amyloidoses. J. Struct. Biol. 130, 310–322.PubMedCrossRefGoogle Scholar
  60. Zhouravleva G., Frolova L., Le Goff X., Le Guellec R., Inge-Vechtomov S., Kisselev L., and Philippe M. (1995) Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14, 4065–4072.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Institut für Organische Chemie und Biochemie, Lehrstuhl für BiotechnologieTechnische Universität MünchenGarchingGermany

Personalised recommendations